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ABSTRACT

Fault diagnosis in large-scale systems that are products of modem technology present

formidable challenges to manufacturers and users. This is due to large number of failure

sources in such systems and the need to quickly isolate and rectify failures with minimal down

time. In addition, for fault-tolerant systems and systems with infrequent opportunity for

maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in

the system is unrealistic. In this project, we have developed novel block and sequential

diagnostic strategies to isolate multiple faults in the shortest possible time without making the

unrealistic single fault assumption.
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1.EXECUTIVE SUMMARY

1.1Problem Definition and Significance

Diagnosis is the process of identifying the cause of a malfunction by observing its effects at

various monitoring/test points in a system. As technology advances, there is a significant

increase in the complexity and sophistication of systems. Moreover, integration and

miniaturization have sharply limited access to test points. Thus, the number of failure sources

have increased while reduction in monitoring points have resulted in reduced fault observability,

making it increasingly difficult to troubleshoot these systems. Consequently, system

maintenance presents formidable challenges to manufacturers and users. In this vein, computer-

aided design techniques for system modeling and computational algorithms for test sequencing

are of paramount significance. This research has developed novel multiple fault diagnosis

algorithms to directly address this vital need.

Maintenance and design have traditionally been two separate engineering disciplines with

often conflicting objectives: maximizing ease of maintenance versus optimizing performance,

size and cost. Testability analysis has been an ad hoc, manual effort, in which maintenance

engineers attempt to identify an efficient method of troubleshooting for the given product, with

little or no control over product design. Testability deficiencies in the design can not therefore

be rectified. This adversely impacts the life-cycle cost. It is now widely recognized that

testability must be engineered into the product at the design stage itself, so that an optimal

compromise is achieved between system maintainability and performance. This process of

refining a system design to improve testability is termed Design for Testability (DFT), and is

now a requirement in most complex system development projects.

Our previous research has developed multi-signal directed graph modeling techniques

that enable the representation of a system either top-down (as lower-level details become

available), bottom-up (for system integration tasks) or a combination of both. In addition, we

have devised test sequencing algorithms to analyze the testability of a system design, and to

determine a near optimal sequence of tests for diagnosing single faults in hierarchical systems.

A solution to the test sequencing problem is a decision tree, which specifies the test to perform

next depending on the outcomes of previously applied tests. A novel feature of our approach is

the integration of concepts from information theory and AND/OR graph search techniques to

overcome the computational explosion of the optimal test sequencing problem [1].

Furthermore, the top-down nature of the search algorithms have enabled us to derive a variety

of near-optimal and practical diagnostic strategies that provide a tradeoff between the degree of

suboptimality and computational complexity [1-11]. The resulting algorithms have

demonstrated their utility on large hierarchical systems: Boeing-Sikorsky has employed our

algorithms on a flight-control system model with 8 levels of hierarchy and 10,000 faults and test

points; we have generated the troubleshooting strategies of a space shuttle main propulsion

system with 7000 failure sources and a similar number of test points (using a digraph model
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providedby NASA-Ames) in only 1.5 hourson a Sparestation 10. In this effort, we have
extendedthesingle-faultdiagnosticstrategiesto situationswheremultiplefaultsmaybepresent.

1.2Research Results

1.2.1 Sequential Algorithms for Multiple Fault Diagnosis

As part of our effort on multiple fault diagnosis, we investigated the problem of

constructing near-optimal test sequencing algorithms for diagnosing multiple faults in complex

systems. The computational complexity of solving the optimal multiple-fault isolation problem

is super-exponential, that is, it is much more difficult than the single-fault isolation problem [1 ],

which, by itself, is exponential. By employing concepts from information theory and Lagrangian

relaxation, we developed several static and dynamic (on-line or interactive) test sequencing

algorithms for the multiple fault isolation problem that provide a tradeoff between the degree of

suboptimality and computational complexity. Furthermore, we derived novel diagnostic

strategies that generate a static diagnostic directed graph (digraph), instead of a static diagnostic

tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall

diagnostic strategy reduces substantially. Computational results based on real-world systems

from Sikorsky Aircraft indicate that the size of static multiple fault strategy is strictly related to

the structure of the system, and that the use of an on-line multiple fault strategy can diagnose

faults in systems with as many as 10,000 failure sources. The details on sequential multiple fault

strategies may be found in the following references:

12. Shakeri, M., Pattipati, K., Raghavan, V., Patterson-Hine, A., and Kell, T.,"

Sequential Test Strategies for Multiple Fault Isolation", 1995 IEEE AUTOTESTCON,

Atlanta, GA, Aug. 1995.

13. Shakeri, M., Pattipati, K., Raghavan, V., Patterson-Hine, A., and Iverson,

D.L.," Multiple Fault Isolation in Redundant Systems", 1995 IEEE International

Conference on Systems, Man and Cybernetics, Van Couver, BC, October 1995.

14. Shakeri, M., Raghavan, V., Pattipati, K., and Patterson-Hine, A., "Sequential

Testing Algorithms for Multiple Fault Isolation," submitted to IEEE Transactions on

Systems, Man and Cybernetics, August 1996.

1.2.2Fault Diagnosis with Imperfect Tests

We investigated two fault diagnosis problems for the case when tests are imperfect : (1)

sequential fault diagnosis under single fault assumption; and (2) fault diagnosis when all test
remits are available as a block.

When tests are imperfect, the test sequencing problem corresponds to a partially observed

Markov decision problem (POMDP), a sequential multi-stage decision problem wherein the

states are the set of possible failure sources and information regarding the states is obtained via
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theresultsof imperfecttests. Theoptimalsolutionfor this problem was obtained by applying a

continuous state dynamic programming (DP) recursion. However, the DP recursion is

eomputationally very expensive owing to the continuous nature of the state vector comprising

the probabilities of faults. In order to alleviate the computational explosion, we developed an

efficient implementation of the DP recursion. We also considered various problems with special

structure (e.g., parallel systems) and derived closed-form solution/index-rules without having to

resort to DP. Finally, we developed a variety of top-down graph search algorithms for

problems with no special structure, including multi-step DP, multi-step information heuristics

and certainty equivalence algorithms. We compared these near-optimal algorithms with DP for

small problems to gauge their effectiveness. The details on test sequencing with unreliable tests

may be found in the following reference:

15. Raghavan, V., Shakeri, M., and Pattipati, K., "Test Sequencing Algorithms with

Unreliable Tests," submitted to IEEE Transactions on Systems, Man and Cybernetics,

August 1996.

Next, we considered the problem of constructing optimal and near-optimal multiple fault

diagnosis (MFD) in bipartite systems (i.e., systems with failure sources connected directly with

tests) with unreliable tests. It is known that exact computation of conditional probabilities for

multiple fault diagnosis is NP-hard. The novel features of our diagnostic algorithms was the use

of Lagrangian relaxation and subgradient optimization methods to provide: (1) near-optimal

solutions for the MFD problem, and (2) upper bounds for an optimal branch-and-bound

algorithm. The proposed method was illustrated using several medical diagnosis examples.

Computational results indicated that: (1) our algorithm has superior computational performance

to the existing algorithms (approximately three orders of magnitude improvement over the

algorithms in the artificial intelligence literature; (2) the near-optimal algorithm generates the

most likely candidates with very high accuracy; and (3) our algorithm can find the most likely

candidates in systems with as many as I000 faults. The details of the algorithm may be found in

the following references:

16.

17.

Shakeri, M., Raghavan, V., Pattipati, K., and Patterson-Hine, A., "Optimal and

Near-optimal Algorithms for Multiple Fault Diagnosis with Unreliable Tests," 1996

1EEE A UTOTEST Conference, Dayton, OH, September 1996.

Shakeri, M., Raghavan, V., Pattipati, K., and Patterson-ITme, A_, "Algorithms for

Multiple Fault Diagnosis with Unreliable Tests," submitted to IEEE Transactions on

Systems, Man and Cybernetics, August 1996.
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Abstract

In this paper, we consider the problem of constructing near-

optimal test sequencing algorithms for diagnosing multiple

faults in redundant (fault-tolerant) systems. The computa-
tional complexity of solving the optimal multiple-fault isola-

tion problem is super-exponential, that is, it is much more

difficult than the single-fault isolation problem, which, by it-

self, is NP-hard 1[1]. By employing concepts from information

theory and Lagrangian relaxation, we present several static

and dynamic (on-fine or interactive) test sequencing algo-

rithms for the multiple fault isolation problem that provide a

trade-off between the degree of suboptimality and computa-

tional complexity. Furthermore, we present novel diagnostic

strategies that generate a static diagnostic directed graph (di-

graph), instead of a static diagnostic tree, for multiple fault
diagnosis. Using this approach, the storage complexity of the

overall diagnostic strategy reduces substantially. Computa-

tional results based on real-world systems indicate that the

size of a static multiple fault strategy is strictly related to

the st_sctu_re of the system, and that the use of an on-line

multiple fault strategy can diagnose faults in systems with as

many as I0,000 failure sources.

1 Introduction

The complexity associated with the maintenance of large

integrated systems, such as the space shuttle or a modern

aircraft consisting of mechanical, electro-mechanical and

*Research supported in part by the Department of Economic
Development of the State of Connecticut, NASA-Ames Research
Center, Sikorsky Aircraft and Qualtech Systems, Inc.

1This means that the computational requlrements of an opti-
mal algorithm cannot be bounded by a polynomial function of the
number of failure sources and/or the number of tests.

hydraulic subsystems, presents formidable challenges to

manufacturers and end users. This is due to the large
number of failure sources and the need to quickly iso-

late and rectify such failures with minimal down time.

In addition, for redundant (fault-tolerant) systems and

for systems with little or no opportunity for repair or

maintenance during their operation (e.g., Hubble tele-

scope, space station), the assumption of at most a single
failure in the system between consecutive maintenance

actions is unrealistic. Thus, the efficient maintenance of

complex redundant systems requires advanced diagnostic

algorithms for multiple fault isolation. This paper con-

siders the problem of constructing efficient algorithms for
diagnosing multiple faults in systems with and without

redundancy.

For diagnostic purposes, we only need to model how

a failure (or cause) propagates to the various monitoring

points. Consequently, it is sufficient to model the system

in its failure space. That is, the model does not describe

how the system normally performs, but how the various
failure sources manifest themselves as malfunctions. The

failure propagation is modeled in the form of first-order
cause-effect relationships using digraph techniques. The

fundamental premise of digraph techniques is that the

cause-effect linkages must connect the fault origin to the

observed symptoms of the fault. The digraph models

encompass a variety of modeling approaches, including

dependency models [32], signed directed graphs [33], and

fault trees [34].

Once a system is described in terms of a digraph model,

the full order dependencies among failure sources and

tests can be captured by a binary test matrix B, consist-

ing of the failure sources as row indices and the tests as

column indices [12]. This binary test matrix can be used

to diagnose single faults, as well as multiple faults in sys-



tems having no redundancy. This assertion is based on

the assumption that the failure sources are independent

and, consequently, the failure signature of a multiple fail-

ure is the union of failure signatures of individual failure

sources. However, this property is not valid for systems

with redundancy, even under the assumption of failure

independence. The single faults and minimal faults, i.e.,

minimum number of faults with a failure signature dif-

ferent from the union of failure signatures of individual

faults, together with their failure signatures, constitute

the necessary information for fault diagnosis in redun-

dant systems. Thus, the problem of generating a binary

test matrix in redundant systems reduces to the prob-

lem of finding minimal faults of a digraph model. After
generating the binary test matrix, the problem is to de-

sign a sequential testing strategy for diagnosing multiple
faults. Thus, multiple fault diagnosis involves two se-

quential steps: (1) generation of a binary test matrix,

which contains all the necessary information for single-

fault and multiple-fault diagnosis, and (2) design of a
multiple-fault testing strategy that unambiguously iso-

lates the failure sources with minimum expected testing

cost (or time).

The problem of finding minimal faults in digraph mod-
els is much more difficult than that in the fault tree mod-

els, which, by itself, is NP-hard [2]. This is because

a fault tree model contains no cycles (feedback loops),

and because there exists only one target event, for which

the minimal faults (cuts) should be computed. Rauzy
[2] considered the problem of computing minimal faults

(cuts) of fault tree models, and presented an efficient

method to compute them using binary decision diagrams.
Vatn [3] presented a method for the identification of min-
imal cut sets in a fault tree. The cut sets are stored in

a virtual tree structure. In this method, by traversing
the virtual tree, minimal cuts of size one are identi]_ed

first. Then, in the second iteration, all minimal cuts of
size two are identified and compared with the cut sets of

size one to exclude non-minimal cuts. This procedure is
continued until all minimal cuts are identified.

Since the number of minimal cuts can increase expo-

nentially with the size of the tree, it is practical to trun-

cate the computation by neglecting higher order and/or

low-probability faults. Brown [4, 5] presented an algo-

rithm that uses probability-based truncation, and deter-

mines a rigorous upper bound on each event-probability

by propagating the effect of all the truncated cut sets in
the form of numeric residuals. Iverson and Patterson-

Hine [6] considered the problem of generating singletons

(single fault) and doubletons (double faults) in digraph
models. A major contribution of this paper is the de-

velopment of a top-down recursive algorithm that finds

all the minimal faults in digraph models, and an efficient

bottom-up algorithm that finds minimal faults up to a

limited size. The failure signatures of minimal faults are

generated thereafter, and the single-fault binary test ma-
trix is augmented to include this information.

Davis [7, 8] described a fault diagnosis system that rea-

sons from the knowledge of structure and behavior. Fail-

ure candidate generation in this approach occurs in three

basic steps: circuit simulation and discrepancy collec-

tion, potential candidate determination, and global con-

sistency determination using constraint suspension tech-

niques. However, for multiple fault diagnosis, this ap-

proach suffers from severe computational explosion, de

Kleer and Williams [9] presented a model-based approach

to fault diagnosis. By keeping track of multiple sets of

consistent and inconsistent components, their algorithm
generates minimal sets of faulty candidates rather than

generating all possible candidates. This approach re-

quires the complete specification of system components,
the state and observed variables associated with each

component, and the functional relationships among the

state variables. However, the precise information re-

quired by these models is typically not available for com-

plex systems and is too costly to obtain. In addition,

because of exten_;_,_e use of functional simulation, this ap-

proach is extremely slow, and, thus, is not appropriate for

fault diagnosis in large scale systems with the complexi-

ties of many orders of magnitude more than the examples

presented in [9]. Sheppard and Simpson [35] provided
a formal analysis of the multiple failure problem in the

context of information flow model. They discussed the

computational complexity of several algorithms for di-

agnosing multiple failures, and developed algorithms to

generate multiple fault diagnoses for a given ambiguity

group. However, this method does not take into account

the failure probabilities of components, test costs, or sys-
tem redundancies.

In this paper, we first extend the single-fault strategy
of our previous work [1, 10, 12, 28] to diagnose multi-

ple faults by _acce_ve replacement of single fault candi-

dates. Using this strategy, we seek to isolate the poten-
tial single-fault candidates, then double-fault candidates,

and so on. Since a component may be repaired/replaced
before confirming that it is indeed faulty, the probability

of false alarm error or RTOK (retest OK) is higher than
that with multiple fault strategies that use all informa-

tive tests before repairing a component in the system.

Next, we focus on developing a class of Sure strate-
gies [11] for diagnosing multiple faults in digraph models

that employ all informative tests before diagnosis. The

basic idea of these strategies is to find one or more defi-

nitely failed components, while not making an error when

other co-existing faults are present. Furthermore, in or-

der to eliminate the problems associated with the stor-



ageof the complete diagnostic strategy, an interactive
testing strategy has been implemented. Instead of gen-

erating the entire diagnostic tree, the interactive testing

strategy suggests the next test to be applied, given the

outcomes of previously applied tests, and generates the

path leading to the isolation of multiple failures in a sys-

tem. We employ concepts from information theory and

Lagrangian relaxation to generate several on-line diag-

nostic strategies. Using these strategies, we can diagnose
multiple faults in large systems with as many as 10,000
failure sources.

2 Problem Formulation

We assume that the system is modeled by the digraph

DG = {S, T, A, E}, where E denotes the set of directed

edges specifying the functional information flow in the

system and

• S = {sl, ...,sin} is a finite set of independent failure

sources (failure aspects) associated with the system;

• T = {tl, t2, ..., tn} is a finite set of n available binary
outcome tests, where the integrity of system failure

sources/components/modules can be ascertained;

• A = {ax, ..., ag} is a finite set of AND nodes repre-

senting system redundancies.

The input requirements of the various nodes of the

directed graph are as follows:

1. Failure node: Unconditional a priori probability vec-

tor of failure nodes P = [p(sx),...,p(sm)], where

p(si) is the a priori probability of failure source si.

2. Test node: A set of test costs C = {cl, c_, ...,c,_},

where cj is Lhe cost of applying test tj, measured
in terms of time, manpower requirements, or other
economic factors.

3. AND node: Two sets U = {ux,...,uK} and V =

{vl,...,vK}, where ut and v_ denote u_-out-of-v_
logic for AND node at, i.e., AND node at has vk

inputs and a failure must occur in at least ut inputs
of this AND node for the faults to propagate to the

output.

The problem is to design a testing strategy that unam-

biguously isolates the failure sources with minimum ex-
pected testing cost. The AND/OR sequential test strat-

egy is represented in the form of a tree or a graph, where

the OR nodes represent the suspect sets of failure sources,
AND nodes are tests applied at various OR nodes, and
the leaves are the isolated failure sources.

3 Single Fault Testing Strategies

Once a system is described in terms of a digraph model,

all the necessary information for fault diagnosis can be

captured by a binary test matrix (fault dictionary), B =

/hi//of dimension m x n. In a single fault strategy, it is
assumed that the system is tested frequently enough that

at most one component has failed. Thus, the test matrix

denotes the full-order dependency among single failures

and the tests in the system, i.e., the rows and columns of

the test matrix correspond to failure sources and tests,

respectively. The test matrix can be computed by the

reachability analysis algorithms [12].

The single fault diagnosis problem, in its simplest

form, is the five-tuple (S, P,T, C, D), where

S =S V {s0}={s0,sl,...,sm} is a set of failure

sources, where so is a dummy failure source denot-

ing fault-free condition and V denotes the union of

two sets;

P =[P0, Pl,---, Pro/is the conditional probability vec-
tor associated with the set of failure sources S based

on a single fault assumption [11], where p0 is the

probability of fault-free condition, so. These are re-
lated to unconditional prior probabilities {p(s_)} via:

1
(1)p0

1-p(sk)

Pi -- for i = 1,...,rn

1-p(sk)

• T and C are as defined in Section 2;

• D = [dij] is a binary test matrix of dimension (m +

1) x n, where d0i = 0 for 1 <: j < n, and dij = bij

for l <i<mandl < j<n.

The algorithms for designing optimal single-fault di-

agnostic strategies are based on dynamic programming

(DP) [13], and AND/OR graph search procedures. The
DP technique is based on a bottom-up procedure, and

has storage and computational requirements of O(3")

for even the simplest test sequencing problem. The

AND/OR 2 graph search algorithms are top-down heuris-

tic graph search procedures that employ a cost-to-go es-

timate to speed up the solution search process [1].

2These AND/OR nodes of the _arc.h graph should not be con-

fused with the AND nodes of a digraph model. AND/OR graph

search formalizes the strategy generation process, where as AND

node of the digraph model denotes redundancy.



A novel feature of this approach is that the cost-to-

go estimate (termed the Heuristic Evaluation Function

(HEF)) is derived from Huffman coding and entropy.
These information theoretic lower bounds ensure that

an optimal solution is found using the AO*, HS, and

CF search algorithms [12]. In addition, because of the

top-down nature of the AND/OR graph search algo-

rithms, several near-optimal search algorithms have been

derived: (1) AO_ algorithm, (2) limited search AO*, and
(3) Multi-step information heuristics. Furthermore, be-

cause of their top-down nature, these algorithms extend.

naturally to: (1) modular diagnosis, (2) precedence con-

straints, setup operations, and resources and (3) recti-

fication. The algorithms have been implemented in a

software package, termed TEAMS (Testability Engineer-

ing and Maintenance System[12]). For convenience, these

algorithms are referred to as the TEAMS-S algorithms.

Example 1.a: Consider the digraph model in Figure 1.

In this system, there are five failure sources st,..., sh.
The set of five tests, labeled tl,..., ts, may be used to

identify the unknown failure sources. The test matrix,

along with the a priori probabilities of failure sources
and test costs, is shown in Table 1. Based on a single

or no fault assumption, the set _¢_failure aspects S =

{so, sl, ...,ss}, with the concomitant conditional proba-
bility vector P =[0.700, 0.01, 0.020, 0.100, 0.050, 0.120].

An optimal test strategy for this example is shown in

Figure 2. For this test strategy, the average test cost is
m 2

J _- Ei--0 EtjETAi cj.Pi = .18, where TAi is the set of
applied tests in the path leading to the isolation of failure
source si E S.

tl

t2 S 4

S5 Sl

Figure 1: Digraph model for Example 1.a

The single fault assumption may not be valid in sit-
uations where the opportunity for frequent maintenance

does not exist. In such eases, the single fault strategies

can give wrong diagnosis when multiple failures occur. In

[11], we showed that the set of hidden faults and mask-

FAILURE

SOURCES

TESTS

TEST COSTS ci
11111

Sz t2tat4ts
01001Sl

s2 001 10 0.027

s3 10011 0.125
1 1 0 0 0 0.068S4

85

FAULT

PROBABILITIES

p(si)
0.014

11110 0.146

Table 1: Test Matrix, Apriori Fault Probabilities and

Test Costs for Example 1.a

OR NODE

Pf_> TEST PASSES

___) f => TEST FAILS

Figure 2: Single-fault Test Strategy for the System of

Example 1.a

ing false failures are potential multiple fault candidates
at each leaf node of the single fault diagnostic tree. The
set of hidden faults for failure source si consists of those

failure sources whose failure signatures corresponding to

TAi are subsets of tile failure signature of si, while tile

set of masking false failures for failure source si consists
of those sets of failure sources whose failure signatures

corresponding to tests TAi add up to mask the failure

signature of si. Hidden faults can be diagnosed by ap-

plying a single fault strategy repeatedly [11]. However,
if the set of masking false failures at the leaf nodes is not

empty, the single fault strategy will give wrong diagnosis,

and repairing the implicated fault is obviously of no use
in this case. In the next section, we present an extended

single fault strategy to diagnose masking false failures,
as well as hidden faults in a system.

4 Multiple Fault Diagnosis Using an Ex-

tended Single Fault Testing Strategy

In order to formalize this approach, let



• TSj -- test signature associated with test tj. It in-

dicates all the failure sources detectable by test t j,

i.e., TSj = {si]b_j = 1 for 1 < i < m},

• G = union of test signatures of previously passed
tests.

In this approach, we invoke a single fault strategy, and

repair/replace the identified component at each leaf node,

if any. Then, we check whether the repaired/replaced
component at each leaf node is definitely faulty or not.

If for any test t_ that failed previously, the cardinality of

TS_ - G is one, i.e., TSj - G contains only one failure
source, then the corresponding failure source is definitely

faulty. If the repaired/replaced component is definitely
faulty, we apply additionai tests, if necessary, to isolate

the remaining faults. Additional tests can be applied
from either the root OR node, or from the first failed

test in the path leading to the identification of previous

faults. This process ensures that we do not come back to
the same leaf node twice.

Alternatively, if the replaced module is not definitely
faulty, there exist other sets of components which have

the same failure signature as the failure signature of re-
placed module, i.e., masking false failures [11]. In this

case, if we start from the root OR node or the first failed

test in the path, we may reach the same leaf node. In

order to solve this problem, we remove the replaced mod-

ules from the ambiguity group at the current stage of di-

agnosis, and invoke the single fault strategy TEAMS-S
to isolate the remaining suspected components. Then, we

repair/replace the identified modules at each leaf node. If

tile repaired/replaced module at a leaf node of this tree is

definitely faulty, we apply additional tests from the root
OR node or from the first failed test after last repair. On

the other hand, if the identified module at a leaf node is

not definitely faulty, we update the ambiguity group and

invoke single fault strategy as before. This procedure is
continued until no test gives further information or the

system is fault-free.

One drawback of the extended single-fault strategy is

that the probability of repairing/replacing a good com-

ponent, i.e., false alarm error or RTOK (retest OK), is

higher than that with multiple fault strategies that em-

ploy all informative tests before repairing a component

in the system (see section 5.2). Furthermore, in the

case of very large systems, it is practical to solve mul-

tiple fault isolation problems up to a certain cardinality
L >_ 1, e.g., single or double failures. This is based on

the premise that multiple faults of large cardinality are

much less likely to occur. However, in an extended sin-

gle fault strategy, if we stop expanding the diagnostic
tree after limited repair actions, say L, it does not mean
that we can diagnose multiple faults up to size L using

the same tree. This is because a component may be re-

paired/replaced before confirming that it is indeed faulty.

Example 1.b: In this example, we consider the same

system as in Example 1.a. The extended single fault

diagnostic strategy for this example is shown in Figure
3, where the ACTION nodes represent the actions to

be performed at each stage of diagnosis. Note that the
shaded parts of the tree are the same as those in a single

fault diagnostic tree of Figure 2. The average testing cost

for this case is J =2.780. The joint probability that s5 is

good, and is repaired/replaced is 0.0103.

ACTION NODE

Figure 3: Extended Single Fault Strategy to diagnose
multiple faults in Example 1.a

5 Multiple Fault Testing Strategy in

Systems without Redundancy (AND

nodes)

In digraph models without AND nodes, i.e., without re-
dundancy, a test-matrix containing the full-order depen-

dency among single failures and the tests can be used to

diagnose multiple faults. This is because in these models
the failure signature of a multiple-failure is assumed to

be the union of failure signatures of individual failures

(failure independence assumption).

One approach that employs all informative tests before

repairing/replacing a component is to consider all possi-

ble combinations of failure sources., i.e., 2 s, and generate

an optimal multiple fault diagnostic strategy using the

single-fault test sequencing algorithm TEAMS-S. How-



ever,thestorageandcomputationalcomplexityof opti-
malmultiple-faultisolationproblemissuper-exponential
in m. In orderto reducestoragecomplexity,weusea
compactset notation [14], and in order to reduce the
computational complexity, we present a class of Sure di-

agnosis strategies for multiple fault isolation.

5.1 Compact Set Notation

Following Grunberg et al. [14], we use the compact nota-

tion A= e(L; F1, ..., FL; G) to denote the multiple fault
ambiguity group at each OR node. The Fi for i = 1, ..., L

and G are subsets of S = {s0,sl, ..., s,,}; G is the set of

known good failure sources (failure free sources), and Fi
for i = 1, ..., L are sets that are known to contain at least

one definitely failed failure source each, i.e.,

e(L; F_, F2, ..., FL; G) = {X C_Sl

XAFi#Ofori=l,...,L, and XAG=O}

where A denotes the intersection of two sets. In the fol-

lowing, we summarize some of the properties of compact

set notation [11, 30]:

1. Multiple fault logic using the compact set notation
is as follows: the initial hypothesis set is the set of
all subsets of S, i.e., A= O(1; /'i = S ; G = 0).

After performing a test, say ti, the hypothesis set A
= e(L; F1,..., FL; G) is decomposed as follows:

O(L; (F, A TS;), ..., (FL A TS;);
A *-- (G v TSj)) if tj passes

O(L+I;F1,...,FL,TSj AG';G) iftj fails

where TS] and G ¢ are complements of the sets TSj
and G, respectively.

2. If E _D Fi for some i (that is, E is a superset of Fi),

then e(L + 1; F1, ..., Ft., E; G)=e( L; FI, ...,F_;
G) [14]. Thus, we should not apply any test whose

signature is a superset of one of the Fi's, since the

test does not give any new information.

3. A = O(L; F_, ..., Ft.; G) = O(L; F_ AG ¢, ..., FLAGC;

G), where superscript c denotes the set complement,
i.e., G e = S- G [14].

4. Given aset of previously applied passed tests T_ C_T

and failed tests T! C T, the multiple fault ambigu-

ity group at the current stage of diagnosis can be

generated directly as follows: e(L; Fl, ..., FL; G),

where G -- Vt,eTpTSi, L=IT/I+I, FI=S (see the
first property), and F_+I=TS i AG¢ for i = 1, ..., ITII

and tj • T/; and then, employ property 2 to remove
super sets from the set F = {F1, ..., FL}.

5. If ITsl = 0, then L = 1 and so • F1. If ITII > 0,
none of the Fi's contains so.

6. The worst case storage complexity of compact set

notation for an OR node is O(mn) [11].

7. The failure sources belonging to F_ with cardinality

IFd = 1 are definitely faulty (one-.for-sure condi-

tion).

5.2 Sure Strategies for Multiple Fault Diagnosis

In this section, we present three diagnostic strategies,

Sure 1-3, that seek to find definitely failed components,

even though there may be others still undiagnosed. Thus,

these strategies isolate failures one (or more) at a time,

while not making an error when multiple faults are

present. The framework for Sure strategies is sketched

in Figure 4.

1

t
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, I

No No I
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Figure 4: Framework of Sure Strategies in a Test-and-

repair Cycle

The three basic ingredients of Sure 1-3 are: (i) min-

imal candidate generation, (ii) minimal candidate isola-

tion, and(ill) multiple fault propagation. The minimality

property implies that a particular candidate includes the
minimum number of failure sources that explains all test

results observed so far (if any). Consequently, the inher-

ent combinatorial explosion that occurs in generating an

optimal multiple fault strategy is reduced substantially.

Before describing the algorithms, we define minimal (ir-

reducible) set and hitting set of a set of subsets:
Definition 1: A minimal or irreducible set for a collec-

tion of subsets Q = {Ql ,---, Qk} is a set I(Q) c Q such

that I(Q) = Q - {Qi[BQj • Q and Qj c Qi}, i.e., I(Q)

is equal to set Q without any super set.

Definition 2: A hitting set for a collection of sets Q =

{QI, ..., Qk} is a set H(Q) ={Hi, ..., gq} such that H 1 C

vl<_i<_Q_ forj = l,...,q, and HjAQI ¢ $for i = 1,..., k.
Based on these definitions, it can be shown that [30]:



Lemma 1: The minimal set of a multiple fault am-

biguity group A = O(L; FI, ..., FL;G) is the minimal

hitting set for the collection of sets F = {F1, ..., FL}, i.e.,

I(A) = I(H(F)).

In Sure 1-3 strategies, at each stage of diagnosis, we

consider the minimal candidate set of the multiple fault

suspect set corresponding to the OR. node at that stage.

Reiter [15] has derived an algorithm to determine the
minimal hitting set of a collection of sets, and Greiner et

al. [16] have presented a correction to the Reiter's algo-
rithm. We use this technique to determine the minimal

hitting set of F = {F1, ..., FL} at an OR. node. After

determining the minimal candidates of a multiple fault
suspect set at the current stage, we evaluate the con-

ditional probabilities of minimal candidates using Bayes'

rule. Then, we invoke the single fault strategy TEAMS-

S to isolate these candidates, and propagate multiple

fault suspect set through the resulting diagnostic tree.

Note that, using the fourth property of compact set no-
tation, it is sufficient to generate and store multiple fault

ambiguity group at the leaf nodes of this tree only. We
repeat these procedures for each leaf node of the tree

until: (1) the intersection of minimal candidates is not
empty, i.e., the corresponding failure sources :re defi-

nitely faulty, or (2) no test provides further information.
The former corresponds to the case when the cardinality

of one or more Fi in the ambiguity group is one.

After repairing/replacing the components isolated by

Sure strategies, we apply additional tests, if necessary,
to isolate the remaining failure sources. We explore

three different approaches for the application of addi-

tional tests: (1) start from the root OR node of the diag-

nostic tree; (2) start from the first failed test in the path
leading to the isolation of previous faults; (3) update the

multiple fault suspect set at the leaf node by integrat-

ing previous test results using the fourth property of the

compact set notation, removing repaired/replaced fail-

ure sources from the ambiguity group at the leaf node,

and invoking Sure strategies for the updated ambiguity

group. Sure 1-3 algorithms correspond to the first, sec-
ond and third approaches for applying additional tests,

respectively. These are presented in detail in [17].

The Sure1 diagnostic strategy is simple and the result-

ing diagnostic tree is very similar to the single fault diag-
nostic tree. However, the expected testing cost using this

strategy is usually high. The expected testing cost using

Sure2 diagnostic strategy is less than the first one, but

the next test to be performed after repairing/replacing
each failure source will be different. Furthermore, the di-

agnostic tree will change to a digraph (directed graph).

The expected testing cost for the third approach is the

smallest, but the size of the diagnostic tree will be con-

siderably larger than the others. This is because the

number of leaves of the diagnostic tree is the same as

the number of distinguishable multiple-fault failure sig-

natures. For example, in the worst case, i.e., when the

test matrix B is diagonal, the number of leaves is 2"_.

This is because there are 2m possible multiple-fault fail-

ure signatures. But, the number of leaf nodes in Surel

and Sure2 diagnostic strategies in this case are the same

as in a single-fault strategy, i.e., m + 1.

One of the interesting features of Sure strategies is that

the starting point for all three algorithms is the same

tree as in a single fault strategy for the system under
consideration. This is because the minimal candidate

set for 2 s is {s0, Sl, ..., sin}. Therefore, these strategies

isolate a single fault with the smallest average cost, while

not making an error when multiple faults are present.

Furthermore, in the case of very large systems, instead

of generating all minimal candidates, we can generate
minimal candidates of size less than a certain threshold,

L, and diagnose multiple faults up to that size.

Example 1.c: Figure 5, without (with) the dashed

lines, shows the multiple fault strategy for the system
in Example 1.a, based on Surel(Sure2) algorithm, where

Ai denotes the ambiguity group corresponding to the

OR. node i, and Al= (3(1;{so,s1,s_,s3, s4,ss} ;0); A._=

O(1;{s0,s_,s3}; {Sl,S4, Ss}); A3 = 0(1; {sl,s4,ss};0);

A4= ®(1; {So}; {s1,s2,s3,s4,85}); A5 = ®(I; {s_,s3};

{s:,s4, ss}); A6 : @(1; {s,,s4}; {s2,sa,ss}); A7
= 0(2; {81,B4,SS}, {S2,S3,85};O); As = @(1; {s2};

{8:,s3, s4,s5}); A9 : (3(1; {s3}; {sl,s4,ss}); AlO

= (3(1; {Sl} ; {82,S3,S4,Ss}); All = (3(1; {s4}:

{s2, s3, ss}); A12 = (3(2;{s4, {s2,ss); {8,, s31); A,3
= (3(3; {s,,8,,s,},{s,,s3};0); =
(3(2; {83},{S1,$4}; {S2,S5}); A1, : @(3; {s,,s4,s_},

{Sl,Sa}, {s2, ss}; 0); A:6 : (3(2; {s,}, {s2}; {ss,s4,s_});

A:7 = 0(4; {81,S3}, {$2,85}, {S3, S4,S5}, {Sl,S4, S5);_)

Note that the shaded parts of the tree are the same

as those in the single fault diagnostic tree of Figure 2.

The average testing exit for the optimal multiple fault

strategy is ./ = 2.411, and the average testing cost for

the first (Surel) and second (Sure2) approaches using

the diagnostic strategy of Figure 5 are J = 2.715 and
J -- 2.616, respectively.

Example 1.d: The Sure3 strategy for Example 1.a is

shown in Figure 6, where A:s -- A20 = A24 = (3(1; {s0};

{sl, 82, $3, ; =
; A23 = (3(1;{s4}; {s2, sa, ss}) ; A21 --- A22 -- A25 =

O(1; {Sl}; Is2, ss, s4, ss});

Note that the shaded and dashed parts of the tree in

Figure 6 are the same as those in Figure 5. For this test

strategy, the average test co6t J - 2.535. In this exam-

ple, we considered a block replacement strategy when no
test gives further information, for example, see ambiguity

groups AI_ and Alv.
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Figure 5: Surel and Sure2 Test Strategies for Example
1.a

6 Multiple Fault Testing Strategy in Sys-

tems with Redundancy (AND nodes)

In digraph models with AND nodes, the assumption that
the failure signature of a multiple failure is the union

of failure signatures of the corresponding individual fail-
ures is not valid. This is because the failures of multi-

ple modules can propagate to tile output of AND nodes,

and therefore, generate a different failure signature. In

these models, minimal faults and their failure signatures

contain all the necessary information for multiple fault

diagnosis [30].
In this section, we first present a top-down recursive

algorithm to find all the minimal faults and their failure
signatures; the minimal fault algorithm is presented in

detail in [18]. Even though this algorithm can easily be

extended to generate minimal faults with a limited size L,

we present an efficient bottom-up procedure to generate
minimal faults up to a limited size L. This is because, in

very large systems, it is efficient and practical to generate
minimal faults up to a specified size L using the bottom-

up procedure.
Then, after generating minimal faults, we augment the

binary test matrix B to include minimal faults, and ex-

tend Sure diagnostic strategies of the previous section to

systems with redundancy.

6.1 Minimal Fault Algorithm

In order to generate the minimal faults and their fail-

ure signatures, we use the reachability analysis algorithm

of [12] to build: (1) failure source-test dependency ma-
trix B of dimension m x n, which denotes the full-order

Figure 6:Sure3 Test Strategy for Example 1.a

dependency among single failure sources and tests, (2)

failure source-AND node dependency matrix H of di-

mension rn × z, which denotes the full-order dependency

among failure sources and AND node inputs and out-
K

puts, where z = _j=t(vj + I), (3) AND node-test de-
pendency matrix E of dimension /x" x n, which denotes

the full-order dependency among AND nodes and tests,

(4) AND node-AND node dependency matrix R of di-
mension K x z, which denotes the full-order dependency

among AND node outputs and AND node inputs and

outputs, and (5) AND node-AND node reachability ma-
trix Q of dimension K x K, which denotes the full-order

dependency between AND nodes and AND nodes by set-

ting AND nodes' logic of u,-out-of-vk to 1-out-of-v_ in

the reachability analysis algorithm, i.e., AND nodes de-
volve into OR nodes.

For notational convenience, given a binary matrix X --

[xiy] of dimension kl x k2, we define Xr_ for i = 1, ..., kt

as its ith row, and Xcj for j = 1, ..., k2 as its jth column.

6.1.1 Top-down approach

Using the binary matrices, the top-down minimal fault

algorithm finds the minimal faults of the digraph model

via the following steps (see [18] for details):

Step 1."
Because of the definition of minimal faults, the algorithm
needs to process only those AND nodes As C_A for which

there exists at least a path from the AND node to a test.



Thealgorithmsorts the AND nodes in As such that each

AND node will be processed before any other AND node

reachable from it. This step prevents the algorithm from

performing the same operations twice.

The procedure for finding and sorting As is as fol-

lows: (1) the algorithm finds a subset of AND nodes

Ae C_ A such that each AND node ak E Ae can be de-

tected by at least a test, i.e., Ae = VEcj for j = 1, ..., n;

(2) using AND node-AND node reachability matrix Q,

it finds the subset of AND nodes As that reach Ae, i.e.,

As = VakEAeQck; and (3) the algorithm sorts the AND

nodes in As based on the number of AND nodes reaching

them in ascending order. Note that the number of AND

nodes reaching an AND node aj is )"]_=1 q_J"

Step 2:
For each AND node ak E As, the algorithm finds the
set of failure sources and AND nodes that can reach the

AND node inputs and output. Then, it removes single

failures affecting the AND node from its input signatures,

and generates the minimal combinations of AND nodes

and failure nodes for each AND node a_ E As using one

of the following three approaches: (1) minimal hitting set

meth_5.using a breadth-first search [15, 16],(2) minimal

hitting set method using a depth-first search, and (3) bi-

nary decision diagrams [2]. However, because of the small
number of AND node inputs, i.e., vk for k = 1, ..., K, usu-

ally 2 or 3, there is no significant difference in using any
of these three approaches.

Note that we can consider a limit L for the number

of failure sources in the minimal combinations of AND

nodes. In the first and second approaches, those com-
binations with more than L failure sources are not ex-

panded. In the third approach, at first the decision dia-

gram is generated, and then, the combinations with more
than L faults are eliminate_. Furthermore, when vk=2

for k = 1, ..., K, the problem of finding minimal combi-
nations for each AND node reduces to the problem of

finding the cross-products of failure signatures of AND

node inputs [6].

St p 3..
After generating the minimal combinations for each AND

node in As, the algorithm processes one AND node at a

time. The subroutine for this part is a recursive function

and, for simplicity, we call it MFG (Minimal Fault Gen-

erator). In order to find minimal faults for an AND node,
say hi, we call MFG for hi. MFG replaces ai with one of
its minimal combinations. If this combination contains

no AND nodes, MFG adds this combination to the set of

minimal faults of AND node a/only if it is not a superset

of one of them. On the other hand, if the combination

contains AND nodes, it selects one of the AND nodes

from this combination, say aj, and calls MFG again for

aj. This procedure continues until no AND node remains

in that combination, or a previously processed AND node

is selected, i.e., there exists a feedback loop containing
the AND node. In the former case, MFG adds this com-

bination to the set of minimal faults of the AND node,

only if it is not a superset of one of them. In the latter

case, if the failure of the combination can propagate to

the output of the AND node, MFG ignores that AND
node, and continues. Otherwise, it returns without do-

ing any thing. This step prevents the algorithm from

entering an infinite loop, when a cycle is encountered.
Note that we can consider a limit L for the number of

faults in the minimal faults of AND nodes. In this case,

at each iteration, MFG checks whether the number of
faults in the AND nodes and failure nodes combination

is greater than the limit L or not. If the number of failure
nodes in this combination is greater than L, it returns;

otherwise, it expands the selected AND node as before.

In order to make the algorithm efficient, we employ the
following Lemma:

Lemma 2: Let us assume that Xr is a vector of dimen-

sion z, and if eL E As, X, [k(l)]= 1 for l = 0, ..., v_, other-

wise Xr [k(/)]=0 for l = 0, ..., vk. If Hr_ A Xr is equal to

Hrj A Xr and there exists a minimal combination mc E

MC(ak ) and si E rnc, then (mc- {si }) V {s_ } E MC(ak ).
Further, if there exists a minimal fault mf E MF(ak)

and si E mf, then (mf- {si}) V {sj} E MF(a_).

Using this Lemma, before generating minimal combi-
nations of each AND node, we find all the failure sources

with the same failure signature in the H matrix. That

is, we generate the set M={M1, M2,...,M,,} such that
M_ C_ S for l = 1,...,_ and Vsi E Mt have the same

failure signatures in the binary matrix H. Using this ap-

proach, the failure sources that have the same effect on

the AND ncdes, i.e., the failure sources in series [6], or

those in Gross feedback loops [12], are considered as a

group of failures. Thus, instead of generating the mini-
mal combinations and minimal faults for each AND node

based on S, we generate them based on M only, i.e., min-

imal faults are subsets of M. After generating these sets,
we expand the minimal faults of AND nodes based on M

to generate the minimal faults based on S.

Step 4:

After generating the minimal faults of the AND nodes,

the algorithm generates the minimal faults of the di-

graph model (MF_). Firstly, using the AND node-test

dependency matrix E, the algorithm removes the mini-
mal faults of those AND nodes that cannot be detected

by any test. Secondly, if a set of faults belongs to the set

of minimal faults of two or more" AND nodes, the algo-

rithm considers only one of them. Then, using the binary



matrices,thealgorithmgenerates the failure signatures
of remaining faults. Note that the remaining faults may

contain supersets, and because of the test points in the

digraph model, a superset may/may not be a minimal

fault of the digraph model. Thus, those supersets, which
have the same failure signatures as the union of the fail-

ure signatures of their subsets, are removed.

6.1.2 Bottom-up Approach

The bottom-up approach can be used to generate mini-

mal faults up to a limited size, say 2 or 3, in systems with

as many as 10,000 failure sources and 1000 AND nodes.

For clarity, let us assume that vt=2 for k = 1, ..., K. In

this algorithm, using the first step of the top-down proce-

dure, we find a subset of AND nodes As C_ A that should

be processed. Then, using the failure source-AND node

dependency matrix H, for each AND node at E As, the

algorithm finds the failure sources that can reach one of

the AND node inputs, but cannot reach their outputs,

i.e., Sck(1),Sck(2) for ak E As. By finding the cross-

products [6] between two sets Set(l) and Sck(2), the al-

gorithm generates minimal combinations of size 2. Then,

using the failure source-AND node dependency matrix
H and AND node-AND node binary matrix R, the fail-

ure signatures of these faults can be found and stored

in a binary matrix B'. Using binary matrix B _, the al-
gorithm finds the failure sources that can reach one of

the AND node inputs, but cannot reach their outputs,

i.e., Sc_:(1),Sc_.(2) for ak E As. By finding the cross-
prod ucts between two sets Sc' k (1) and Sct (2), SCk (1) and

Sc_:(2), and Sc_ (1) and Sc_ (2), the algorithm generates
all minimal combinations of size 3, as well as some mini-

mal combinations of size 4. This procedure is continued

until either no failure can reach any of the AND node

inputs, or all the minimal faults of the desired size are

_enerated. After generating minimal combinations of size
L, using the fourth step of the top-down algorithm, min-

imal faults of size L of the digraph model are generated.

Note that, because of the presence of feedback loops and

common elements in some paths in the digraph models,

it is not efficient to use a bottom-up approach to find all

the minimal faults of a digraph.

6.2 Extended Compact set Notation

After generating minimal faults and their failure signa-
tures, we expand the binary matrix B with the mini-

mal fault failure signatures. Thus, in systems with AND
nodes, each row of the test matrix corresponds to a sub-

set of S= {sx, ..., sin} . For notational simplicity, let us

assume that the new test matrix contains mn = m + m!

rows, where m/is the number of minimal faults. We de-

fine W={wl,...,wm.}, where w, = {si} for i - t,...,m,

andwiC_Sform+l<i<rr_.

After generating the binary test matrix, we extend the

compact set notation of the previous section to systems

with redundancy. In this case, the ambiguity group at
each OR node of the AND/OR graph is based on W, i.e.,

the Fi for i = 1, ..., L and G are subsets of W=WV {w0}

= {w0, wl, ..., w,_.}, where {w0} = {so} and

@(L; Fx, F2, ..., FL; G) = {Z C W[

XAFi¢0fori= 1,...,L, andbr(X) AG=0}

where Y(X) =Vw,gs(x)wi, and S(X) C S is the set of
all failure sources in w i e X, i.e., S(X) - {si]Vwj E

X and si E wj }.

6.3 Extended Sure Strategies

In order to derive the Sure diagnostic strategy, we need to

generate the minimal candidates at each iteration. Note
that, Lemma 1 is not valid for minimal faults in a system

with redundancy. This is because wj for j -- 1,..., m,, are
not independent, and because of the AND nodes, the fail-

ure signature of a set of components that has some thing
in common with the Fi's is consistent with the failed

tests, but it may be inconsistent with the passed tests.

In this case, the set of minimal candidates of a multiple

fault ambiguity group is generated using the following

Lemma [30].
Lemma 3: The minimal set of a multiple fault ambigu-

ity group A = ®(L; F1, ..., EL; G) for a system with re-

dundancy is I(A)={X[X e I(H(F)) and _'(X)AG = 0},

where F = {Fl, ..., Fr}. That is, the minimal set of a
multiple fault ambiguity group contains only those ele-

ments of the minimal hitting set F that are consistent

with the set of good components, G.

In addition, the one-for-sure condition of previous sec-

tion should be generalized as follows:
Lemma zl: If the cardinality of any Fi is one, all the

failure sources in wj E Fi are faulty, and if the cardi-

nality of Fi is greater than one, all the failure sources in

Awj_F, wj, are definitely faulty. Evidently, these two con-
ditions can be combined as follows: all the failure sources

in A,oieF, Wj, for i = 1, ..., L, are definitely faulty.
Further, we can use the following two Lemmas to up-

date the ambiguity groups at each OR node.
Lemma _i: Let us assume that we repaired definitely

failed components X C S, and that there exists a wi E G

such that [wj -X/= 1 and st = [wj -X I. Then, sl: is

good and should be added to the good component subset
G.

Lemma6: If we repair definitely failed components

wi = {si}, and there exist a wj such that si E w_, then

w i should be added to the good component subset G.
In summary, the Sure diagnostic strategies for systems

with redundancy is as follows:

10



* the ambiguity group at each OR node of the

AND/OR graph is represented based on W (rather

than S),

* minimal candidates are generated based on Lemma
3,

• definitely failed components at the leaf nodes are

found using Lemma 4, and

* the ambiguity groups at the leaf nodes are updated
based on Lemmas 5 and 6.

Example 1.e: Consider the digraph model in Figure 7.

This digraph model differs from the one in Figure 1 in
that we have added an AND node al. The minimal fault

for this digraph model is we={st, s3} (see Table 2). Fig-
ure 8 without (with) the dashed lines, shows the multiple

fault strategy for this system, based on Surel (Sure2) di-

agnostic strategy, and Ai denotes the ambiguity group

corresponding to the OR node i, and A1 = e(1; {w0, wl,

W2, W3, W4, Wb, W6}; O); A2 = 0(1; {wo, w2, wa}; {wl, w4

,wb,w6}); A3 = O(1; {Wl,W4, Wb, we}; 0); A4 = @(1;

{wo}; {w,, w2, wa, w4, wb, we}); A5 = ®(1; {w2, wa};

{wt, w4, Ws, we}); A6 = O(1; {wl, w4}; {w2, wz, wb,

we}); A7 = @(1; {w,, w4, w5, we}, {w2, wa, ws, we};

O); As = O(1; {w2}; {wl, w3, w4, wb, w6}); A9 = 0(1;

{wa}; {Wl, w4, ws, w6}); A,o = ®(1; {w4}; {w,, w2, w3,
wb, w6}); All = @(1; {wt}; {w=, wa, w_,we}); Al2 =

O(1; {w2, ws}, {w4, wb}; {wt, wa, we}); A,a = @(1; {wl,

wa, we}, {w=, wa, ws,we}, {w,, wa, ws, we}; 0); A,4 =

O(1; {w3}, {Wl, Wa}; {w2, ws, we}); A15 = @(1; {wt, wa,

we}, {w2, Wb, w6}, {Wl,W4, Wb,We}); A16 = ®(1; {wl},

{w,}; {wa, w4, ws, we)); A,r = @(1; {w,, wa, we}, {w2,

ws}, {wt,w4,ws, {w3,w4,wb,wd)

$2

D

' !' --O "

Figure 7: Digraph model

Note that At4 = e(1; {wa}, {wl, w4}; {w2,wb,w6});

i.e., F1 = {wa}, F2 = {wl, w4), and G - {w=, wb, we}).

Therefore, wa = {s3} is definitely faulty. After repairing

sa, using Lemma 5; i.e., w6 E G, wt = {sl} is good and

should be added to the list of good components G. Thus,
by eliminating wl from F2, we conclude that w4 is defi-

nitely faulty; the cardinality of F2 is one. After repairing
w4, G = S, and there is no need to apply additional tests.

The average testing cost for Surel and Sure2 diagnostic

strategy using the diagnostic strategy of Figure 7, are

J = 2.603 and J = 2.505, respectively.

FAILURE
SOURCES

w_ = {st)

TESTS

tl t2 f3 _4 f5

TEST COSTS cj
11111

.............01001
00110

10011

11000

ws={ss} 1 1 1 1 0

W 6 ----{Sl, 83} i 1 1 i 1

Table 2: Test Matrix and Test Costs for Example 1.e

.qb

t_

)
i

p f

I

I_r| I

P f

Figure 8: Multiple Fault Diagnostic Strategy for Exam-

ple 1.e
Example 1.f: The Sure3 strategy for Example 1.e is

shown in Figure 9, where At8 = A20 = O(1; {w0}; {wl,

w2, w3, w4, ws, we}) ; At9 = 0(i; {w_}; {wt, wa, w4,

= o(1; weD.
Note that the dashed parts of the tree in Figure 9 are

the same as those in Figure 8. For this test strategy, the
average test cost J = 2.492. In this example, we con-

sidered a block replacement strategy when no test gives

further information, for example, see ambiguity groups

11



Figure9:Sure3TestStrategyforExample1.e

A12 and A17.

7 On-line Multiple Fault Diagnosis

Strategies

In this section, we consider the problem of designing an

on-line (interactive or dynamic) diagnostic strategy to

isolate multiple failures in a physical system. That is, in-
stead of generating the entire diagnostic tree, the on-line

strategy only suggests the next test to be applied given
the outcomes of previously applied tests. Our approach

is to employ concepts from information theory and La-

grangian relaxation to solve this problem.

At each stage of diagnosis, we consider a set of avail-

able tests TA which can provide some information about

the system. Initially, TA contains all tests except those

that can detect all or no faults. Then, we recommend

a test using a local, step-by-step optimization algorithm

developed by Johnson [19]. In this approach, a test t_
from the set of available tests TA is selected, if it maxi-

mizes the information gain per unit cost of the test:

k = arg m.ax{ IG(A, tj) } (2)
j cj

where A is the ambiguity group at the current stage of

diagnosis, and IG(A, ti) is the information gain given by:

IG(A, t,) = -{P'(Ai_ ) log2P'(Ajp) + P'(A)I ) logs P'(Ait)}
(3)

In (3), {Ajp, Ai1 } are the subsets of the ambiguity group

A corresponding to pass and fail outcomes of test tj

such that Aip V Ai1 = A, and P'(Ajp) =P(Ajp)/P(A),

P'(_I) -- P(AJl)/P(A) are the conditional probabili-

ties of the pass and fail outcomes of test t j, and P(Aip )

and P(Ail ) are the probabilities of ambiguity groups Ajp

and Aj l , respectively.
In general, P(A = O(L; F1, F2, ..., F_; G)), needed in

the evaluation of information gain, can be computed as
follows:

P(A) = P((Uim=l@i) n 0) (4)

where rh is the number of minimal candidates, and _i for

i = 1, ..., fit are the minimal candidates of the ambiguity

group A and - denotes the logical NOT operator[20][23].

In addition, for notational clarity, we use the same no-

tation for expressing a set and its Boolean expression.
Furthermore, we use fl and U as Boolean product and

sum, i.e., conjunction (AND) and disjunction (OR) of at

least two Boolean expressions, respectively [20] 3 . We de-

fine G0 C G as a set containing single failures of G, and

Gto as its complement within G, i.e., G_o = G_ = G- G,.

Thus, by expanding (4) and using the associative law of

Boolean algebra [21], we have:

P(A) = P((U_=I_i)nO, nO.)

= P(((,_:___e,)nC.)nO.) (5)

where - denotes the logical NOT operator[20][23].
By defining Oi = q2i n (% for i = 1,..., fit, (5) reduces to:

P(A) = P((U_=l¢i ) n Gw) (6)

This further reduces to:

P(A) = P(Ur_=l¢_i) - P((U'P=lcbi ) n C,_) (7)

= P(U_=lf,) - P(U#=I t_ _,_a.( ep` n wi) )

Since Oi = _i n Gs, the second term of (7) should be

considered only for those wj that do not have any thing
in common with G,. Further, it is sufficient to evaluate

the second term of (7) for wi E I(G,_), i.e., irreducible

set of G_. This is because, if wk C wj, any set satisfying

the Boolean expression (Oi n wj) will satisfy (q'i n wt).

The problem in (7) is equivalent to the problem of
finding the probability of a sum of non-disjoint sets.

This problem is known as the sums of products prob-

lem, and its computational complexity is NP-hard [22].

Veeraraghavan et al [23] considered the sum (product)

of products (sums) problem and proposed an efficient

Boolean algebraic algorithm, the so-called GKG-VT al-

gorithm, for its solution. In this algorithm, the probabil-

ity of the union of a set of events can be evaluated using

the following equation [23]:

SThis is in contrast to V and A, which are used to denote

Boolean conjunction and disjunction of two sets.
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P{U_IPi}= P{(IP1)u (-i--fillP_)u... (-i'ff,..._--fip-,IPp)}
(8)

Since these resulting sets are disjoint, their probabilities

are added to obtain the probability of the desired event.

Thus, the first term in (7) can be evaluated as follows:

P(((U_=I{I)) = P(U'_=x_iIG,)P(G, ) (9)

= P(u[_=Ie'l_') IX (1 - p(sk))
s_EG,

where P(Ur_=lqtiIas) is the probability of sum of disjoint

products 9i in S - G, domain, i.e., the number of total

variables reduces from m to m- IG, I. In addition, in

digraph models without AND nodes, Gw = 0. Thus,

the second term in (7) is zero, and P(A) reduces to (9).
Furthermore, in these systems, since the set of minimal

candidates is the minimal hitting set for the set F =

{F1, F_, ..., EL} (see Lemma 1), (9) can be written as:

P(A) = P(NL=xFilG,)) H (1 - p(sk)) (10)
sk6G,

Thus, in systems having no redundancy, instead of

evaluating the probability of ambiguity group A using
minimal candidates at each stage of diagnosis, we can di-

rectly evaluate this probability using F = {FI, ..., FL}.

Furthermore, since the GKG-VT algorithm evaluates

tile probability of {o_+llPi} (sum of products) and

{tq/p+I IPi } (product of sums) sequentially, i.e.,:

P{UP+I Ipi} = P{U_ IPi} + P{(IP1.-.I--ffplPp+,)}

(11)

P{f'_i+'IPi} = P{C_IPi}-P{(IP1...IPpTffp+,)} (12)

the probability of A H = e(L+ 1; F1, ..., FL, TSj AGe;

G) and Aip= o(n; (FxATS]),..., (FLATS_); (GvTSi))
are:

P(Aj;) = (P(ni,F,I¢%) - P(FI ... FL TSj ^arid',))

l'I (1 - p(,_))
._,

= P(A) - P(F, ... FL TSj ^GIG.) 1-I (1 - p(s,))
,kEG,

P(A,,) = P(A)- P(Ail )

= P(F, ... FL TSi ^GIG, ) H (I-p(sk))

#kEG,

Note that when so 6 FI (see the fifth property of compact

set notation), we should split F1 into two disjoint sets

{so} and F_ - {So}.

One of the advantages of this approach, compared to
the one in [24], [25], is that the probability of an ambi-

guity group at the current stage of diagnosis is evaluated

using the probability of ambiguity group at the previous

stage. Furthermore, using this recursive approach, the

probability of any hypothesis at the current stage of di-
agnosis can be evaluated. The computational complexity

of this approach is strongly related to the structure of the
B matrix.

In summary, at each stage of diagnosis, for a given

set G,, we generate the set of disjoint events for

F, F2 ... EL TSj A G c, evaluate P(Ail) and P(Aip),

and recommend a test with the highest information gain.

Based on the test outcome, we update the set of avail-

able tests TA, i.e., we remove the recommended tests

and those tests that do not give any information. This

procedure is continued until: (1) at least a failure source

is isolated, or (2) no test gives further information.
The former corresponds to the case when the cardi-

nality of one or more Fi in the ambiguity group A is

one. After repairing/replacing the failure sources in Fi's

with cardinality one, we update the current ambiguity

group and the set of available tests as follows: (i) add

repaired/replaced components to the set of good com-

ponents G, (ii) remove Fi's containing at least a re-

paired/replaced component from ambiguity group A. If

all the Fi's are removed, we set the current ambiguity

to A=@(1;FI = S - G;G), and (iii) update the set of
available tests TA to all tests except previously applied

passed tests and those tests that do not give any new in-

formation, i.e., those tests tj such that TS 1 AG e is either
an empty set, or a superset of one of Fi (see the sec-

ond property of compact set notation). This procedure

is continued until the set of good components G contains
all the elements.

In the second case, we can select either block or se-
quential replacement. In block replacement, we repair all

the suspected faults, i.e., S-G, and stop testing. In se-

quential replacement, we repair/replace most likely can-

didates and continue testing. The problem of finding the

most likely candidates is as follows:

maximize I-I_=1P(si) =' (1 - p(si)) (x-_') (13)
171

subject to )-'_-i=* Flizi > 1 ; i= 1, ..., L (14)

_:_'=, rk,., < Iwkl - 1 ; w_ e c. (15)

z, 6 (0,1) ; i = 1,...,m (16)

where Fu = 1 if si 6 Ft; otherwise Fti = 0; r_i = 1

if si 6 w,; otherwise rki = o. Constraints (14) and
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(15)ensurethat the mostlikelycandidatesareconsis-
tentwith thefailedandpassedtests.Furthermore,us-
ing Lemmas1and6,it issufficientto consider(15)for
Gw={wklwk e I(Gw) and wk A G, = @}, where I(Gw)
is the irreducible set of G_. By taking the logarithm

of the objective function in (13), an equivalent objective
function is:

maximize _,,m=l x, log _ (17)
(1-p($i))

subject to (14), (15) and (16). Thus, the problem of
finding the most likely candidates for redundant systems

reduces to a generalized set-covering problem [26], [27].

Furthermore, in systems having no redundancy, Gw =

0. Consequently, (15) is eliminated, and the problem

reduces to a traditional set-covering problem [31].

The generalized set covering problem is solved via a

Lagrangian relaxation technique. In this technique, the

constraints (14) and (15) are relaxed via Lagrange mul-
tipliers. The solution of the relaxed problem is an up-

per bound for the covering problem. The multipliers are

updated iteratively via subgradient optimization to min-

imize this upper bound. In addition, the upper bound

and the relaxed solution can be used to develop the best

feasible solution for the generalized set covering problem.
A nice feature of the relaxation approach is that the dif-

ference between the upper hound and the best feasible

solution, termed the approximate duality gap, provides
a measure of suboptimality of the feasible solution. The

details may be found in [30, 26, 27].

Using the solution of the generalized set-covering prob-

lem, the most likely candidate is Sm = {si[zi = 1}. Note

that, usually p(si) < 0.5 for i = 1,..,m. In this spe-
cial case, the most likely candidate is one of the minimal

candidates of the current ambiguity group. After repair-

ing the most likely candidates, we update the ambiguity

group and continue testing.

In order to solve multiple fault isolation problems in

larger systems with as many as 10,000 failure sources,

we employ the following simplified approach to compute

information gain in (3). If the ambiguity group A at the
current stage of diagnosis contains more than one single
failure source; i.e., intersection of Fi's contains more than

one fault, we select a test t_ that maximizes the informa-

tion gain per unit cost of the test based on a single fault

ambiguity group. That is, in this case, IG(A, tj) in (2)

is the information gain based on single fault assumption,

p'(Aip ) and p'(Aj/) in (3) are the conditional probabili-

ties of the pass and fail outcomes of test tj based on the
single fault assumption in ambiguity group A. However,

based on the test outcome, we update the multiple fault

ambiguity group (see properties 1 and 2 of the compact

set notation). This procedure is continued until: (1) at

least a failure source is isolated, i.e., the cardinality of

one or more of Fi's is one, (2) no test gives further infor-
mation, (3) the cardinality of intersection of Fi's is one,

i.e., there exists a set of masking sets for the single fault

in that intersection, or (4) the set of good components G

contains all the components, G = S.

The first and second cases are the same as those in the

previous approach. In the third case, we recommend a

test based on a measure of information content in [28],

and continue testing until the first or second condition is

reached. In the fourth case, since all the components are

good, no further action is needed. This approach has less

computational complexity, but higher testing cost com-

pared to the previous approach, based on sum (product)

of disjoint products (sums).

In addition to a set of comprehensive synthetic prob-

lems, we have applied the algorithms presented in this

paper to several real-world systems. These include: (1)
the Space Shuttle Main Propulsion System with 7271

failure sources and 1292 AND nodes [6], (2) the FIS-
Flight control system with 148 failure sources and 78

AND nodes [29] with failure sources limited to singletins

and doubletons, (3) the anticollision light control system

of the Sea Hawk helicopter with 51 failure sources and 55

tests, (4) the stabilator system of the Black Hawk heli-

copter with 238 failure sources and 834 tests, and (5) the

engine torque monitoring system used in CH-53E heli-
copter with 116 failure sources and 75 tests. In tile latter

three cases, static and dynamic multiple fault diagnos-
tic strategies subject to various constraints on available

resources, setup operations, and initial failure symptoms

have been implemented, along with interfaces to interac-
tive electronic technical manuals and multi-media docu-
mentation.

8 Conclusion

In this paper, we considered the problem of constructing

near-optimal test sequencing algorithms for diagnosing

multiple faults in systems modeled as digraphs. This

problem involves two sequential steps: (1) generation of
a binary test matrix, and (2) design of a multiple-fault

testing strategy that unambiguously isolates the multiple

failures with minimum expected testing cost (time).

In systems without redundancy, a binary test matrix

denoting the full-order dependency among single failures

and the tests forms the basis for diagnosing single, as well

as multiple faults in the system. In order to diagnose

multiple faults in systems with redundancy, this binary

test matrix is augmented to capture the failure signatures

of minimal-faults. Using a top-down recursive procedure,
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wedevelopedanalgorithmto find all the minimal faults
and their failure signatures in redundant systems, and

using a bottom-up procedure, we presented an efficient

algorithm to find minimal faults up to a limited size.

After generating the binary test matrix, the problem is

to design a practical multiple fault test sequencing algo-
rithm. The computational and storage complexity of an

optimal multiple fault strategy are super-exponential in

the number of failure sources, m. We presented several

near-optimal algorithms that provide a trade-off between

optimality and computational complexity. Firstly, we

extended the single-fault strategy of our previo_.ls work

[1, 10] to diagnose multiple faults by successively isolating

the potential single-fault candidates, then double-fault

candidates, and so on. This is one of the simplest mul-

tiple fault strategies that one can use. In this approach,
the storage complexity at each OR node of the AND/OR [1]

graph is the same as that in a single fault strategy.

We then extended the single fault sequential testing

strategies to a class of Sure strategies. The basic idea

of these strategies is to find one or more definitely failed

components, while not making an error when other co-
existing faults are present. We explored three different [2]

approaches for the application of additional tests, result-

ing in Surel-3 strategies.

Some of tile advantages of using Sure strategies are: [3]
(1) the inherent combinatorial explosion that occurs in

generating an optimal multiple fault strategy is reduced

substantially, (2) the first iteration of the Sure strategies

results in the same tree as in the single fault (minimal [4]
fault) strategy for the system without (with) redundancy,

and therefore, these strategies isolate a single fault (mini-

mal fault) with the smallest average cost, while not mak-

ing an error when multiple faults are present. Computa- [5]
tional complexity of this approach is strictly related to
the structure of the system, i.e., the test matrix B ......

In order to eliminate the problems associated with the

size of the complete diagnostic strategy, the test strategy

can be generated "on-line". That is, instead of gener- [6]
ating the entire diagnostic tree, the interactive strategy
only suggests the next test to be applied given the out-

comes of previously applied tests. We employed concepts
from information theory and Lagrangian relaxation to

generate several on-line diagnostic strategies. In these [7]

strategies, at each stage of diagnosis, a test with the

highest information gain is recommended. The compu-

tation of information gain associated with a test requires

the probabilities of ambiguity groups corresponding to [8]

pass and fail outcomes of the test. An efficient computa-
tional approach based on sum (product) of disjoint prod-

ucts (sums) is used to evaluate these probabilities. How-
ever, the computational complexity of this approach is

strongly related to the structure of the binary test matrix

B and previously applied tests. In order to derive a prac-

tical (albeit suboptimal) on-line diagnostic strategy ca-
pable of diagnosing multiple faults in large scale systems,

we estimated these probabilities via: (1) the probabilities

of single failures at the ambiguity group, i.e., At<i<LFi,

and (2) the probability of ambiguity group based on all

the suspected faults, i.e., O(1; F1 = {S- G};G) [28].

Note that, these estimates constitute the lower and up-

per bounds for the probability of ambiguity group. We
expect to investigate tighter bounds, as well as other

measures for recommending a test, and compare their
efficiencies in our future efforts.
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Abstract

We consider the problem of sequencing tests to isolate mul-

tiple faults in redundant (fault-tolerant) systems with mini-

mum expected testing cost (time). It can be shown that single
faults and minimal faults, i.e., minimum number of failures

with a failure signature different from the union of failure

signatures of individual failures, together with their failure
signatures, constitute the necessary information for fault di-

agnosis in redundant systems. In this paper, we develop an

algorithm to find all the minimal faults and their failure sig-

natures. Then, we extend the Sure diagnostic strategies [1]
of our previous work to diagnose multiple faults in redundant

systems. The proposed algorithms and strategies axe illus-

trated using several examples.

1 Introduction

Diagnosis is fundamentally a process of identifying the
cause of a malfunction by observing its effects at vari-

ous monitoring points in a system. Fault diagnosis in

large-scale systems that are products of modern technol-

ogy present formidable challenges to manufacturers and

users. This is due to the large number of failure sources
and the need to quickly isolate and rectify such failures

with minimal down time. In addition, for redundant sys-

tems and systems with little or no opportunity for repair
or maintenance during the operation (e.g., Hubble tele-

scope, space station), the assumption of at most a single
failure in the system between consecutive maintenance
actions is unrealistic.

In this paper, we consider the problem of construct-

ing test sequencing algorithms for diagnosing multiple

faults in redundant systems. Our approach is to: (1)
generate all minimal faults and their failure signatures

in the system, and (2) extend the multiple fault sequen-

tial testing strategies of our previous work [1] to fault-

tolerant systems. In addition, the minimal fault analy-

sis can be used for a quantitative evaluation of system
dependability[3, 4].

*Resear_ supported in part by the Department af Economic
Development of the State of Connecticut, NASA-Amel
Center, Sikortd_ Aircraft and Quahech Systems, Inc.

2 Problem Formulation

We assume that the system is modeled by a directed

graph (digraph) DG = {S, T, A, E}, where E denotes

the set of directed edges specifying the functional infor-
mation flow in the system, and

S = {st, ..., sr_} is a finite set of independent failure
sources associated with the system;

T = (_I, g2, ..., tn} is a finite set of n available binary

outcome tests, where the integrity of system failure

sources/components/modules can be ascertained;

A -" {al, ...,aK} is a finite set of AND nodes repre-
senting system redundancies.

The input requirements of the various nodes of the

digraph model are as follows:

.

.

.

Failure node: A priori probability vector of failure

nodes P = [P(Sl),...,p(Sm)], where p(s,) is the a
priori probability of failure source si.

Test node: A set of test costs C = {Cl, c2,..., c,),

where cj is the cost of applying test tj.

AND node: Two sets F = {fl,...,fK} and G =

{gx,...,g/c}, where fk and gk denote f_-out-of-g_

logic for AND node a_, i.e., AND node ak has gk

inputs and a failuie must occur in at least fk inputs

of this AND node for the faults to propagate to the
output.

The problem is to design a testing strategy that un-
ambiguously isolates the failure sources with minimum

expected testing cost. The sequential test strategy is

represented in the form of an AND/OR decision tree,

where the OR nodes repre_nt the suspect sets of fail-

ure sources, AND nodes are tests applied at various OR
nodes, and the leaves are the isolated failure sources.

3 Minimal Fault Algorithm

In digraph models without AND nodes, i.e., having no re-

dundancy, the test matrix (fault dictionary) denotes the
fuR-order dependency among single failures and tests in



the system. Assuming that the failure signature of a mul-

tiple failure is the union of failure signatures of individual

failures, the binary test matrix forms the knowledge base

for diagnosing single faults, as well as multiple faults, in
a system having no redundancy. However, this property

is not valid for a digraph model with AND nodes. It

can be shown that single faults and minimal faults, i.e.,

minimum number of failures with a failure signature dif-

ferent from the union of failure signatures of individual

failures, together with their failure signatures, contain all

the necessary information for fault diagnosis in digraph

models with AND nodes [10].

In order to generate minimal faults and their failure

signatures, we compute the following dependency matri-

ces using the reachability analysis algorithm [2, 6]:

• Failure source-test dependency matrix D - [dlj] is

a binary matrix of dimension m x n, where dij = 1

if tj monitors failure source st; otherwise, dij = 0;

• Failure source-AND node dependency matrix B =

[bii(t)] is a binary matrix of dimension m x z, where
K

z = _j=l(gJ + 1); bij(o) = 1 if a failure of st can
reach the output of AND node aj ; otherwise, bii(o) =

" " 0; and bii(t) = 1 if a failure of si can reach the lth

input of AND node ai; otherwise, bi/(t) = 0;

• AND node-test dependency matrix E = [eij] is a

binary matrix of dimension K x n, where eij= 1 if

t i monitors AND node ai; otherwise, eii= 0;

• AND node-AND node dependency matrix R =

[rij(r)] is a binary matrix of dimension K x z, where
ri/(0) = 1 if a failure at the output of AND node

ai can reach the output of AND node aj; otherwise,

rij(i) = 0; and rij(t) = 1 if a failure at the output of
AND node ai can reach the lth input of AND node

aj; otherwise, rij(t) = 0;

• AND node-AND node teachability matrix Q = [qij]

is a binary matrix of dimension K x K, where qij = 1

if there is at least a path between at and aj; other-
wise, qq = 0.

Note that we can generate AND node-AND node

teachability matrix Q by setting AND node's logic of
ft-out-of-gk to 1-out-of-gk in the teachability analysis al-

gorithm, i.e., AND nodes devolve into OR nodes.

For convenience, given a binary matrix X - [zq] of
dimension kl x/=_, we define Xr_ for i - 1, ...,/cl as its

ith row, and Xcj for j - 1, ..., ka as its jth column. For
example, Drt for i -- 1, ..., m lists all the tests that can

detect failure source s_, and Dcj for j = 1, ..., n indicates

all failure sources detectable by test tj.

Using these matrices, the minimal fault algorithm finds

the minimal faults of the digraph model via the following

steps:

1. Sort a subset of AND nodes As C_ A to be processed.

. Generate minimal combinations of AND nodes and

failure nodes that propagate to the output of every

AND node at E As, i.e., MC(ak) for a_, E As.

.

.

Generate minimal faults of each AND node in As,

i.e., MF(ak) for at E As.

Generate the minimal faults of the digraph model

(MFd) using the minimal faults of AND nodes.

3.1 Step 1 - Sorting the AND nodes

Since we need to process only those AND nodes As C_ A
for which there exists at least a path to a test, the algo-
rithm sorts the AND nodes in As such that an AND node

will be processed before any other AND nodes reachable

from it. This step prevents the algorithm from perform-

ing similar operations repeatedly.

The procedure for finding and sorting As is as follows:

(1) Find a subset of AND nodes Ae C A such that an
AND node ak E Ae can be detected by at least a test, i.e.,

Ae = tJEe i for j = 1, ..., n, (2) Using AND node-AND
node reachability matrix Q, find the subset of AND nodes

As that reach Ae, i.e., As = U,,_eAeQct, and (3) Sort the

AND nodes in As in the ascending order of the number

of AND nodes reaching them. Note that the number of
AND nodes reaching AND node aj is _-_=1 qkj.

3.2 Step 2 - Generation of minimal combina-
ti3ns for each .END node

Using the binary matrices, the minimal fault algorithm

generates minimal combinations of AND nodes and fail-
ure nodes for each AND node in As , i.e., MC(at) for

at E As. The procedure is as follows: (1) For each AND

node at, determine the failure sources and AND nodes

that can reach the inputs and output of ak, i.e., Sck (l) for

1 = 0, 1,, ...,gk, where Set(l) = Bet(1) U Rct(l), (2) Re-

move Sct(0) from Set(l) for l = 1, ...,gt, that is, remove

single failures affecting the AND node output from its in-

put signatures. (3) Because of the ft.-out..of-gt logic, all

combinations of 5ck(I) for I = 1, ...,gt containing sets of

¢a:dinality .ft are considered. For example, for an AND

node, say at, with 2-out-of-3 logic, we consider the fol-

lowing combinations: (Sc_(1), Sck(2)), (Set(l), Set(3))

and (Set (2), Set (3)). Then, using Sck (I)'s combinations,

generate the minimal combinations of AND nodes and

2



failurenodes for ea_ AND node by one of the follow-

ing three approaches: (a) Minimal hitting set I method

using a breadth first search [7], (b) Minimal hitting set

method using a depth first search, and (c) Binary de-

cision diagrams [8]. When gk=2 for k - 1, ..., K, the
minimal combinations for each AND node can be found

using the cross-product of two sets Sck(1) and Sck(2) for
k= 1,...,g [9].

Note that we can consider a limit L for the number

of failure sources in the minimal combinations of AND

nodes. In the first and second approaches (i.e., (a) and

(b)), those combinations with more than L failure sources

are not expanded. In the third approach (i.e., (c)), at

first the decision diagram is generated, and then, the
combinations with more than L faults are eliminated.

However, because of the small number of sets, i.e., gk for

k = 1, ..., K, usually 2 or 3, there is almost no difference

in using any of these three approaches.

3.3 Step 3 - Minimal faults for each AND node

After generating minimal combinations for each AND

node in As, we process one AND node at a time. The

subroutine for this part is a recursive function, and for

simplicity, we call it MFG (Minimal Fault Generator):

MFG ( AND-node, fault-list, AND-llst, level, solved-

AND-nodes). In order to find minimal faults for an AND

node, say ai, we call MFG as follows: MFG(al, 0, 0, 0,

0). MFG adds al to AND-list, and considers it as a level-
zero AND node. Then, if the minimal faults of this AND

node have already been found, MFG adds one of the ai's

minimal faults to the fault-list. Otherwise, it adds one of

the ai's minimal combinations to the fault-list, removes

solved-AND-nodes from that list, and sets the level of the
new AND nodes in the fault-list to level+l. Then, it re-

moves the AND node with the highest t.eve!, say aj, from

the fault-list, and calls MFG as follows: MFG(aj, fault-

list, AND-list, levd-I-1, solved-AND-nodes). This proce-
dure is continued until: (a) no AND node remains in the

fault-list, or (b) the level of the selected AND node is less

than or equal to the level of one or more AND nodes in

the AND-list, or (c) the algorithm picks an AND node

that has already been processed, i.e., the AND node is
in the AND-list.

In the first case, this combination is compared with

other combinations created for AND node at. If it is a

super set of one of them, MFG does not do any thing,
and returns. If it is a subset of one or mote of them,

the algorithm removes the super sets, and it stores this

combination, as well as the set of AND nodes affected

IA hitting set for a collection of sets C il & set H C_UxEcX
such that Hn X _- ¢ for eachX E C

by this combination, i.e., AND-list without considering
levels, and returns.

In the second ease, the algorithm adds the AND nodes

with levels greater than or equal to the level of the se-
lected AND node in the AND-list to the solved-AND-

nodes, resets their levels to zero, and removes these AND

nodes from the fault-list, if any. Then, it processes the
selected AND node.

In the third case, if the AND node has already been

solved, i.e., it belongs to the solved-AND-nodes, it re-
moves the AND node from the fault-list, if any, and picks

another AND node and processes it. Otherwise, the algo-
rithm returns without doing any thing. This latter step

prevents the algorithm from entering an infinite loop,
when a cycle is encountered.

Note that we can consider a limit L for the number of

faults in the minimal faults of AND nodes. In this case,

MFG checks whether the number of faults in the fault-list

is greater than the limit L or not. If the number of faults

in the fault-list is greater than L, it returns; otherwise,

it expands the AND node as before.

3.4 Step 4 - Minimal faults of digraph models

After generating the minimal faults of the AND nodes,
the algorithm generates the minimal faults of the di-

graph model (MFd). Firstly, using the AND node-test

dependency matrix E, the algorithm removes the mini-
mal faults of those AND nodes that cannot be detected

by any test. Secondly, if a set of faults belongs to more

than one minimal combination of AND nodes, the algo-

rithm considers only one of them, and stores the union of
corresponding AND-list as the set of AND nodes affected

by the set of faults. Then, using matrices D, E and AND-

list, the algorithm generates the failure signatures of re-

maining faults, i.e., U,,e_i Dri U,_ eA_rD-ti, Er_, where
wj is a minimal fault, and AND-list is the list of AND

nodes affected by wj. Note that the remaining faults may

contain super sets, and because of the test points in the

digraph model, a super set may/may not be a minimal

fault of the digraph model. Those super sets which have

the same failure signatures as the union of the failure
signatures of their subsets are removed. For example, let

us consider a digraph model with failure sources S={sl,

s2, ss}, AND nodes A={ax, a2} and tests T={tx, t2}.

A failure of sx and sa can be propagated to the output
of the first AND node, i.e., ax, and can be detected by

test tx. A failure of st, m2 and ms propagates to the out-

put of second AND node, i.e., a2, and is detected by test

t2. Therefore, { ax, a2 } and { 8x, a_, ss } ate mini-

real faults of AND nodes al and a2, respectively, and the

minimal fault of a_ is a super set of the minimal fault of

ax. However, beesuse of the different failure signatures,



i.e., {st, s2} is detected by tl and {sl, sa, sa} is detected
by tx and t2, these two sets are the minimal faults of the

digraph model.

In order to illustrate the minimal fault algorithm, we
present the following examples.

Example 1: Consider the digraph model in Figure 1. It

consists of four failure sources S = {sl, s_, s3, s4}, three

AND nodes A = {al, a_, a3} and one test point T = {tl}.
{sl, su, sz, s4) is the minimal fault for this digraph model.

• al

Figure 1: Digraph model of Example 1

The minima/fault algorithm works as follows:

• Step 1: The AND nodes are sorted as follows: al,
a2 and an.

• Step 2: The minimal combinations of failure sources

and AND nodes for each AND node are as fol-

lows: MC(al)= {{s3,s,}}; MC(a_)= {{al,s2} ,
{al, an}}; MC(aa) = {{sl, at, as}}.

• Step 3: {s._,s4}, {s2,so,s4} and {sl,s2,s._,s4} are the

minimal faults of AND nodes al, a2 and as, respec-
tively.

• Step 4: No test can detect {al,a2}. Therefore, the
minimal faults of these AND nodes should be elimi-

nated. Thus, {st, s2, s3, s4} is the only minimal fault

of the digraph model in Figure 1.

Example 2: Consider the digraph model of the F18

Flight Control System (FCS) for the left Leading Edge
Flap (LEF) in Figure 2, which was used as an example

in [3]. The minimal faults for this digraph model are

{FCCA, FCCB}, {FCCA, CIINL3}, {FCCB, CHNL2},
and {CHNL2, CHNL3}.

Example 3: Consider the digraph model in Figure 3,

which was used as an example in [9]. The minimal faults

for this digraph model are {s2, sa}, {s3, s4}, {sa, ss}, and
{sg,sl0}.

3.5 Multiple Fault Strategy

It can be shown that the computational and storage com-

plexity of designing an optimal multiple-fault diagnostic

strategy ate exponential in m [10]. In order to reduce the

Cmm_ |

Figure 2: Digraph Model of F18 FCS LEF of Example 2

Figure 3: Digraph Model of Example 3

storage complexity, we use the compact multiple fault no-

tation for the multiple fault ambiguity group at each OR

node [1], [5]. Furthermore, in order to reduce computa-

tional complexity, we extend the Sure diagnostic strate-

gies of our previous work [1] to redundant systems.

3.5.1 Compact Notation

We use the compact multiple fault notation A =

O(L; F1, ..., FL; G) for the multiple fault ambiguity group

at each OR node in systems without AND nodes [1], [5].

The Fi for i = 1, ..., L and G are subsets of S =S U {so}
= {So, St .... ,s,,}, where so is the fault-free condition;

G is the set of known good failure sources (failure free
sources), and Fi for i = 1, ..., L are sets known to contain

at least one definitely failed component each, i.e.,

e(L; F1, F2, ..., FL; G) = {X C_ SI

XNFi_fori=l,...,L, and XNG=O

In the following, we summarize some of the properties of

compact set notation:

* If E _DF/for some i, then O(L + 1; Ft, F2, ..., Fr,

E; G)=O( L; F,, F:, ...,F,.; V).

. O(L; St, F,, ..., Ft.; G) = O(L; $'1 NG', 1;'2 n G',

..., FL N GO; G), where superscript c denotes com-
plement, i.e., G ¢ = S - G.

• the worst ease storage complexity of compact set

notation for an OR node is O(mn).



* Multiplefault logicusingthecompactsetnotation
is asfollows:the initial hypothesissetis theset of

all subsets of S, i.e., A= 0(1; Fx - S ; G = ¢).

After performing a test, say tj, the hypothesis set A

= e(L; Fx,..., FL; G) is pruned as follows:

OCL; (F, n TS_), ..., (FL I'1TS;); if tj passes
A .- (GUTSj))

e(L + 1;F_,...,FL, TS i nG';G) ift i fails

• the failure sources belong to Fi with cardinality one

are definitely faulty Cone-for-sure).

In systems with AND nodes, each row of the test matrix

corresponds to a subset of S= {Sl,..-,Sm} • For sim-

plicity, let us assume that the new test matrix contains

m, = m + m! rows, where m! is the number of minimal

faults. We defne W={Wl,..., win,}, where wl - {si} for

i = 1, ...,m, and wi C_C_S for m+ 1 < i < ran. Therefore,
the Fi for i = 1, ..., L and G are subsets of W=WU {w0}

= {w0, Wl, ..., win.}, where {w0} = {so} and

O(L; Ft, F2, ..., FL; G) = {X C_WI

X N Fi y£ 0 for i = 1,...,L, and X N G = 0}

Based on these definitions, it can easily be shown that:

Lemma 1: Using one-for-sure condition, if the cardi-

nality of any Fi is one, all the failure sources in wj E Fi
are faulty, and if the cardinality of Fi is greater than

one, all the failure sources in N,o#eF, wj, are definitely
faulty. It is obvious that these two conditions can be

combined as follows: all the failure sources in N,_ie_._wi,

for i = 1, ..., L, are definitely faulty.
Lemma 2: Let us assume that we repaired definitely

failed components X C S, and there exist a wj E G such

that Iwj -X[ = 1 and st = [wj -X[. Therefore, sk is

good and should be added to the good component G.

Lemma 3: If we repair definitely failed components

wi = {si}, and there exists a wj such that si E wj,

then wj should be added to the good subset G.

3.5.2 Sure Strategies

The basic idea of Sure strategies is to find one or more

definitely failed components, while not making an error

when other co-existing faults are present [1]. In these

strategies, at each stage of diagnosis, we consider the

minimal candidate set of the multiple fault suspect set
corresponding to the OR node at that stage, and in-

voke the single fault strategy to isolate these candidates.

Then, we propagate multiple fault suspect set through

the resulting diagnostic tree. We repeat these procedures

for each leaf node of the tree until: (1) the intersection of

minimal candidates is not empty, i.e., the corresponding

failure sources are definitely faulty, or (2) no test gives

further information. The former corresponds to the case

when the cardinality of one or more Fi in the ambiguity

group is one. Note that in these strategies, we only repair
definitely failed components.

Example 4: Consider the digraph model in Figure
4. The digraph model consists of failure source

S = {sl,s2,ss}, AND nodes A = {al,a2,as} and

tests T = {tl,g2,ts}. w4={Sl,S2}, ws={s_,so} and

we={st,s2,ss} are the minimal faults for this digraph
model. The binary test matrix of the digraph model

is shown in Figure 5. Figure 6 shows the multiple fault

strategy for this system, where ACTION nodes represent

the actions to be performed at that stage of diagnosis and

Ai denotes the ambiguity group corresponding to the ith

OR node, and At = O(1; {w0, wt, w2, ws, w4, ws, we};

0); A2 - 0(1; {w0, wl, w2, ws, ws}; {w4, we}); As =

e(1; o); = e(1;
ws, w6}); A5 = 0(1; {w._}; {w4, we}); A6 = 0(1; {w4};

{w6}); and A7 = 0(1; {we}; ¢).
Note that we applied Lemma 2 to A5 and A6. For ex-

ample, As = 0(1; {ws}; {w4, ws}). Thus, w5 is definitely

faulty, i.e., s2 and ss are faulty. After repairing these fail-

ures, there is no need to apply additional tests. This is

because w6 belongs to G, and therefore, st is good; G=S.

One interesting point to note here is that we should not

repair definitely failed components at intermediate nodes

of the diagnostic strategy, because it may mask the fail-
ure of other faults. For example, As = 0(1; {w4, we}; 0).

Using Lemma 1, w4 N w6 = {st, s2} are definitely faulty.

If we repair sl and s2 at this stage of diagnosis, a failure

of ss will go undetected.

Figure 4: Digraph model with AND node

In addition to a set of comprehensive synthetic prob-

lems, we have applied the algorithms presented in this

paper and those of [10] to several real-world systems.

These include: (1) the Space Shuttle Main Propulsion
System with 7271 failure sources and 1292 AND nodes

[9], (2) the F18-FUght control system with 148 failure

sources and 78 AND nodes [3] with failure sources lim-

ited to singletons and doubleto_, (3) the anticollision

fight control system of the Sea Hawk helicopter with 51
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Minimal Tests

faults tt t2 ta

wo(so) 0 0 0
_1(_1) 0 o 0
W2(s2), , o o o
w3(s3) 0 0 0
w4(st,s2) ..... 1 0 0

ws(s2, s3) 0 1 0
w6(sl, s2, s3) 1 1 1

Figure 5: Test matrix

Figure 0: Diagnostic strategy

failure sources and 55 tests, (4) the stabilator system of
the Black Hawk helicopter with 238 failure sources and

834 tests, and (5) the engine torque monitoring system
used in Ctt-53E helicopter with 116 failure sources and 75

tests. In the latter three eases, static and dynamic mul-

tiple fault diagnostic strategies subject to various con-

straints on available resources, setup operations, and ini-

tial failure symptoms have been implemented, along with
interfaces to interactive electronic technical manuals and

multi-media documentation.

4 Conclusion

In this paper, we presented an algorithm to find all min-

imal faults in a digraph model and to generate their fail-

ure signatures. Further, we extended the multiple fault

sequential testing strategies of our previous work [1] to

redundant systems. Computational results indicate that

these strategies can be used on systems with as many

as 600 failure sources and 600 tests. Furthermore, using
Sure strategies, a test strategy can be generated "on-line"

to diagnose multiple faults in larger systems. That is, in-

stead of generating the entire diagnostic tree, the interac-

tive test generation program only suggests the next test

to be applied given the outcomes of previously applied

tests, and generates-the path leading to the isolation of

multiple failures in a system.
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Abstract

In this paper, wc cortsider imperfect test sequencing problems under single fault assumption. This

is a partially observed Markov decision problem (POMDP), a sequential multi-stage decision problem

wherein the states are the set of possible failure sources and information regarding the states is obtained

via the results of imperfect tests. The optimal solution for this probleal can be obtained by applying a

continuous state Dynamic Programming (DP) recursion, ltowever, the DP recursion is computationally

very e×pensive owing to the continuous nature of the state vector comprising the probabilities of faults.

In order to alleviate this computational explosion, we present an efficient implementation of the DP

recursion. We also consider various problems with special structure (parallel systems) and derive closed

form solutions/index-rules without having to resort to DP. Finally, we consider various top-down graph

search algorithms for problems with no special structure, including multi-step DP, multi-step information

heuristics and certainty equivalence algorithms. We compare these near-optimal algorithms with DP for

small problems to gauge their effectiveness.

1 Introduction

An important issue in the field maintenance of systems is the imperfect nature of tests due to improper

setup, operator error, electromagnetic interference, environmental conditions, or aliasing inherent in the

signature analysis of built-itl-self-tests. Typically, a user complaint, which is a subjective measure of system

performance, can also be considered as an imperfect test because it does provide some insight into the

malfunction. Imperfect testing introduces an additional element of uncertainty into the diagnostic process:

the pass outcome of a test does not guarantee the integrity of components under test (because the test may

have missed a fault), or a failed test outcome does not mean that one or more of the implicated components

are faulty (because the test outcome may have been a false alarm).

The consequences of a test error depend on the disposition of the system after repair. If a test results in a

false alarm, a functioning component is replaced, and a failed component may be left in place. If the system

is then returned to service, the system fails immediately. In the case of missed detection by a test, the overall

test could indicate that no item has failed. In this case, the system might be returned to service where it fails

immediately or it might be scrapped. Either choice implies a cost. Relatively little attention has been given

to imperfect testing. Most research efforts were directed at finding test strategies for systems with special

structure (parallel systems). The most complete treatment for parallel systems with imperfect tests is by

Firstman and Gluss [1] in which a two level testing is studied with both false alarms and missed detections

in tests. However, it is assumed that test errors are ultimately recovered by repeating the tests until a

proper repair is made. The test sequence is then determined in the same manner as for perfect testing. The

perfect-test rechecks assures test termination with proper repair and thus fails to capture the fact that test

errors are often unrecoverable. For many systems, imperfect test results cannot be recognized either because

of the test design or because retesting is economically infeasible. In these cases, the consequences of test



Submitted to IEEE Trans. on Systems, Man, and Cybernetics

errors occur outside of the repair facility. Nactdas and Loney [2] presented the problem of test sequencing
for fault diagnosis using unreliable tests for parallel systems. The objective of the fault diagnosis problem is

to minimize tim expected cost required to diagnose and repair the failed component. They present heuristic

algorithms based on efficient enumeration of permutations of test sequences, which are not suitable for large
problems with arbitrary structures. These problems belong to a class of hypothesis testing problems with

dynamic information seeking. Problems in dynamic seard_ arise in a wide variety of applications [10] [11]

[12] [13] [14]. Dynamic search in the context of sequential detection was extensively treated by Wald [18] In
[15],[16],[17], different search problems in the presence of false alarms were considered.

In this paper, we consider a generalized formulation of the test sequencing problem in the presence of

imperfect tests for systems of arbitrary structure. The test sequencing problem in this case is a partiallv

observed Markov decision problem (POMDP) [8] [9], a sequential multi-stage decision problem wherein the

states are tile set of possible failure sources and information regarding the states is obtained via the results

of imperfect tests. The optimal solution for this problem can be obtained by applying a continuous state

Dynamic Programming (DP) recursion. However, the DP recursion is computationally very expensive owing
to the continuous nature of the state vector comprising the probabilities of faults. In order to alleviate

this computational explosion, we present an efficient implementation of the DP recursion. We also con-

sider various problems with special structure (parallel systems) and derive closed form solutions/index-rules
without having to resort to DP. Finally, we consider various top-down graph search algorithms for problems

with no special structure, including multi-step DP, multi-step information heuristics and certainty equiv-

alence algorithms. We compare these near-optimal algorithms with DP for small problems to gauge their
effectiveness.

2 Optimal Test Sequencing with Imperfect Tests

In its simplest form, the test sequencing problem with imperfect tests is as follows: .....

1. A system with a finite set of failure sources S = {s0,sl,s2,...,sm} is given. We make the standard
assumption that the system is tested frequently enough that only one or none of the faults has occurred.

The "no-fault" condition is denoted by a dummy failure source So;

2. The a priori probability of each failure source, p(si) is known;

3. A finite set of n available tests T = {tt,t2,...,t,} are given, where each test tj checks a subset of
failure sources. The relationship between the set of failure sources and the set of tests is represented

by a teachability matrix R = [rij], where rij "- 1 if test t i monitors failure source si;

4. The reliability of each test tj is characterized by the detection-false-alarm probability pair (Pdj, Plj)t..

where PC = Prob{test tj fails [ any of the failure sources monitored by tj has failed}, and PlJ =
Prob{test tj fails [ none of the failure sources monitored by tj has failed};

5. Each test tj(1 < j < n) costs an amount ej measured in terms of time, or other economic factors;

6. Each failure source si(1 < i < m), once identified has repair/replacement cost fi, false repair/replacement
cost Cm, and missed repair/replacement cost CMi associated with it.

The problem is to design a test algorithm with minimum expected diagnostic cost to isolate the failure

source, if any, with a specified level of confidence a (typically, ct E [0.95, 0.99]). Employing the single fault

assumption, the teachability matrix R, and the test reliabilities (P¢., PIj) can be combined into a single
matrix of "likelihoods", D = [dq], where dlj is given by

dq = rqPq + (1 - rij)Plj, (1)

where dij = Prob{ test tj fails [ failure source 8i has occurred }.

When tests are perfect, that is, P_/= 1 - PIJ = 1 for all tests, we have dq = rq.. This corresponds to

a perfectly observed Markov decision problem, and has been discussed extensively in [7]." The solution to

1 Extension to the case when (Pdj, Pyj) are functions of failure source ti is straightforward.
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this problem is a diagnostic decision tree, wherein tile root corresponds to the state of complete ignorance,

tile intermediate nodes relate to states of residual ambiguity and the leaves correspond to individual failure

sources. The test algorithm terminates when the failed element is isolated with complete certainty (that is,
a=l).

When the tests are imperfect, the test sequencing problem is a partially observed Markov decision problem
(POMDP), a sequential multl-stage decision problem wherein the states are tile set of possible failure sources

and information regarding the states is obtained via the results of imperfect tests. It can be shown [4]
that tbe probabilities of failure sources conditioned on all the previous test results constitute a sumcient

statistic (i.e., contain all the necessary information) for deciding the next test to be applied. Formally, let

j(k) E {l,2,...,n} be the test applied at stage k and let O(k) E {1(= pass),O(= fail)} be the outcome of

test tj(_). Further, let Ik-i be the information available to decide on test tj(k) to be applied at stage k. This
information includes all the past tests applied and their outcomes given by:

= o(I)},=o. (2)

Using Bayes' rule, the conditional probabilities of hypotheses {Tri(k) = p(sillk) i = 0, 1,..., m}, which

are the information states of the decision process at each stage k, can be shown to evolve as

[O(k) + (- 1)°(k)dlj(k)]ri(k)

7ri(k + 1) = Zt_0 [O(k) + (- l)°(k)dtj(_)]_rt(k)]" (3)

The above reeursion is initiated with rq(0) = p(si), i = 0, 1..., m, the a priori probability distribution of

failure sources. The optimal test tj(_) is given by the dynamic programming (DP) recursion [4]:

h*({Tri(]c)}) "- J(t)eli,2,-.-,-lmin cj(k) + dtj(k)rt(k) h" k__t=0 dlj(k)?rl(k), ] +

(1 - dtj(k))r,(k) h" \Eta0( 1 _ d,j.(k))r,(k)JJ (4)

where cj(_) is the cost of test tj(k), h" ({r;(k)}) is the optimal expected cost-to-go from the information state

{Try(k) : i = 1,2,..., m}, the terms involving h" inside the brackets are the optimal costs-to-go from the

information states corresponding to the fail and pass outcomes, respectively. The terminal states of this
recursion have known cost :

where

h'({Tri}) = fi' + (1 - 7ri,)CRi, + _ CMiri (5)

i=l,i¢i'

i' = arg m.ax _ri (6)
!

This definition of terminal cost function corresponds to the policy of repairing the most likely fault. Since

{_ri} are continuous, the above DP reeursion is continuous. Thus, the consideration of imperfect tests in

the test sequencing problem formulation converts a finite (albeit large) dimensional search problem of the
perfect test case into an infinite dimensional stochastic control problem.

3 Systems of Parallel Structure

Parallel systems are characterized by a reachability matrix R with ones on the diagonal and zeros every-

where else, for some permutation of tests. That is, every failure state is detected by one, and only one test.

For parallel systems, we can explicitly characterize the optimal policy in the perfect test ease: at each state

of ambiguity, test a module with the highest ratio of probability of failere and the costof testing the module.

For the imperfect testing case, such a closed form solution cannot be obtained without making additional
assumptions. However, in the following subsections, we derive closed-form solutions for some special cases.



Submitted to IEEE Trans. on Systems, Man, and Cybernetics

3.1 Special Case 1:

Let us specialize the above to a parallel system with tile following assumptions:

• all test costs are equal

• a test can be applied more than once

• a fault is implicated if its posterior probability at any stage of testing exceeds a given threshold 7
(typically, y E [0.95, 0.99])

Given this problem context, we first consider a greedy one-step Iookahead strategy that maximizes the

posterior probability of correct decision assuming that a decision would be taken at the next stage implicating

the failure with the maximum posterior probability (MAP decision rule).

Let a and fl denote the false alarm and missed detection probabilities of tests. Let 7ri(k) denote the

conditional probability of the failure source si at k-th stage of testing (stage 0 is when no tests have been

applied). Let fij (Oj [si) denote the conditional probability density of the outcome Oj E {0, 1} of test tj given
that si is present. Given the nature of the tests, we further know that,

{ g(Oi)=flS(Oi)+(l-fl)5(O,-1) fori=jf's(Oils')= h(O,) (1-o,)6(O,)+o6(O, 1) foriCj (7)

where 5(.) is the Dirac Delta function. 2

Let us assume that test tj_ is tim next test to be applied at stage k. Then, since the greedy approach

corresponds to the assumption that the next test is the final one, the decision rule at the next stage is to
implicate the failure source Sd such that:

which translates to,

Let us define:

rd(k + 1) = max ri(k + 1) (8)
i

7rd(k)fdj. (O(jk, k )lsd) = max {ri(k)fij. (O(jk, k)lsi))
!

P(CIs,, jk) = Prob(Correct Decision Is,, jk)

f r,(k)g(O(jk, k)) >_ ,_ax{,-rdk)h(O(j _P(Clsi,jk) Pr

We can simplify the above equation as,

,k))}}

(9)

(lO)

(ll)

P(CIs,, jk) = Pr { lri(k)h(O(jk, k)) >_

L],#m_x {.,(k)h(O(i,, k))},
max

In order to simplify the above two equations, we define:

_rjk(k)g(O(j_,k))] } for jk _ i

(12)

2The function _(_) is defined via:

v x#O

(_3)

(14)
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Then we have for i = _:

and for i # _,

P(CIs_,jk) = Qg(r--_-_.)) for jk =

,r_k)
= 1 - Qh(_---Trv,,)for jk #

7rmt_:)

P(Clsi,jk ) = Qg( ._) for jk = i

= 0 for jk ¢ i

(15)

(16)

where

Qg(a) = Pr(g(z) > ah(z) I PDF of x is g(z))

Qh(a) = Pr(g(z) > ah(z) I PDF of z is h(z))

(17)

(18)

Therefore, we have:

P(Cljk) = 7r-_(k)Qg(_---_-_.)) + 7fen(k)(1 - Q^(_)) for jk = i-_

= rr,_(k)Qg( . ) + rr_(k)(1 - Qh(_)) for jk = rh

.: _'_-(k) _. .= _,j,(k)Qg(_) + 7rm(k)(1 - Qh()) for all other jk

Now an index jk is to be chosen so that the above expression is maximized. In the following, we will show

that P(Cljk) for jk other than i_ and ,h is less than P(C[,h). Let us transform Qa(') and Qh(.) by forming
the likelihood ratio:

h(_) (19)

Assume that if x has a PDF h(x), then A has a probability density function fh(A), distribution function

Fh(A), and integral of the distribution function _h(A). That is,

-_dh(_) = Fh(,_), Fh(A) = fh(A) (20)

Similarly, assume that ifx has a PDF of g(x), then ,_ has a probability density re(A), distribution function

Fg(A), and integral of the distribution function @I(A). It follows that:

It can be easily shown that:

and that

Now, let us define

and note that,

Qa(a)= 1 -Fh(a), and Qg(a) = 1 -Fg(a) (21)

/a(A_=A (22)

FQ_(_) = 1- _h(_)a_ = 1 - _Eh(_) + _h(_)
OO

_i,(k)
P(Cljk) = _'_-(k)_(_-----7___) for j_ # _ and jk #

(23)

(24)

(25)
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We have,

and _o(0) = 1. Now,

_(y) ----y + yqth(1) (26)

Hence, we know that _(y) is a non-decreasing function, and that its minimum value is at y = 0 which is

unity.
Therefore,

P(CIj_) = 7r_(k)_(_) for j_ # _ and jk :/: ,h (28)

Since _(y) k Q_(z) for 0 < z,y < 1, the conditional probability P(CIj,) is maximized by choosing jk = _fi.

However, P(Clra) can be greater than P(CI,i_), and we have to check tiffs condition. Now suppose we define

the Binary Bayesian Equal-cost hypothesis test, where tile hypotheses are that the measurement z has come

either from a probability distribution f(.) or from g(.) with r^ and _ra being the associated priors. We can
write the corresponding minimal probability of error as,

_h 7rh

"'(_) = _Q_((1 - _h) ) + (1 - _.)(l - Q_((1 - _.))) (29)

Note that

and

P(Clm) = 1- r" 7r_:) + ,r,_(/_) (_(t') + ,-r,_(/,-)) (30)

-- P(CI,_,) - [1 - ,'" {1 -

Hence, the optimal strategy is to set jk = 7h if

7r_----(k)+ 7r,_,(k) Qr_(k) + r,h(k)) (31)

Otherwise, set jk = rff.

The above decision rule can be further simplified by substituting the exact expressions for Qg(.) and
Qh(.). That is, the optimal strategy is to set jk = rh if

- - Qh(_)] > 0 (32)

By combining the terms, and expanding Qe(') and Qh(.), the above comparison can be written as,

1-{(l-a+#)l(1-a_ > _)+(l+a-#)l(l __a > _)} >0 (33)

where the indicator function I(E) = 1, when the logical expression E is true, and zero otherwise. This
implies that, when both missed detections and false alarms are present, the optimal policy is to test the

fault with highest posterior probability if the above expression is not greater than zero. Otherwise, the fault
with the second highest posterior probability should be tested. Note that, when the probability of missed

detection/3 is zero, then the above expression is always greater than zero, implying that the decision rule is

to choose j(k) = rh, i.e. test the fault with second highest p_terior probability.

3.2 Special Case 2:

Let us consider another special case involving a parallel system with the following assumptions:

* the test costs {cl,e_,...,era} are known
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• a test cannot be applied more than once

• a fault is implicated when a test detecting it fails

• the tests have no false alarms

• the missed detection probabilities {/_i} are known

Given this scenario, we now proceed to show that the optimal test sequence is an index rule.

Let S* = {j(1), j(2),..., j(m)} represent the index set of the optimal test sequence that minimizes the

expected testing cost. Before writing down tile expression for the expected testing cost, let us consider the

testing strategy described above in detail. The first test to be applied is tj( O, and this test is always applied.
Tile second test ty(2) is applied under one of tile following two situations:

1. tile component sj(l) is not faulty (hence tj( 0 would not fail), or

2. the component sj(t) is faulty but tile test tj(l) missed detecting it (the probability of this event is fljij))

Similarly, the third test /j(a) in tile sequence is applied if sj(t) and sj(2) are not faulty or if the tests tj(l)
and tj(2) missed detecting them.

Now, the above discussion lets us write the expression for the expected testing cost a.s,

E[J(S')] = ci(,) + cio)(1 -p(si(,) ) + p(sj(,))/3j(t)) +...

= c,(k)(1 - _-_p(si(o)(l - _i(;))) (34)
k=l i=1

Let S' = {j'(1), j'(2),..., f(m)} be another sequence of tests obtained from S" by interchanging terms
k and k + 1. That is,

f(i) = j(i) for i # k and i # k + i

j'(k) = j(k + l)

j'(k + 1) = j(k)

If S* is the optimal sequence, then for any k, the expected testing cost. of S _ should be greater than or equal

to that of .5'*. Hence, by expanding and simplifying tile logical expression E[J(S')] >_ E[J(S')], we get

i=k--I

_i(k+_)(1 - _ p(si(o)O - _i(,)) +
i----1

i=k-I

c_(k)(1- v(s_(k+_))(1 - am+t)) - _ p(sj,))(1 - a,.(,)) _>
i-----1

i=k -- 1

c/(t)(1 - E p(sj(i))(1 -/3i(0) +
i=i

i=k

Simplifying,

cj(t+l)( 1 -- EP(sj(o)(I -/_j(i))
i=1

V(Sj(t))(1 -/_j(t))/ej(t) > p(sj(k+O)(1 - fli(t+o)/ej(t+l) (35)

That is, the optimal sequence satisfies the above ordering relation. To prove the converse, observe that the
inequality

p(sj,(O)(1 -/_j,(k))/cj,(_) >_p(si(o)(l -/3j(k))/cj(k) (36)

implies that E[J(S*)] <_ E[J(S_)] and that therefore any sequence that is different from if" c_n be transformed

to ,5"* by successive exchanges of neighboring indices and the result is a reduction in cost. Therefore, the
ordering relation (35) defines an optimal sequence of tests.
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4 Near-optimal Test Sequencing using Information Heuristics and Certainty

Equivalence

An alternative to DP-based test sequencing algorithms is the class of approximation techniques that
employ greedy heuristics based on information theory. For example, in a one-step Iookahead information

heuristic algorithm, if {ri(k)} is the current information state at stage k, we select a test ti(k ) if it maximizes
the information gain per unit cost of the test. The selection rule is:

j(k) = arg max ( IG ({ +ri(k) },t._(+)) }
j+{I,2 ...... } Cj

where IG({Tri(k)},t/(+)) is the information gain given by:

(37)

IG({ri(k)},tj(_)) = H({Tri(k)}) - HC{Tri(k + l)}lt_is applied)

We can write the expression for the information gain explicitly as:

(38)

IGC{+,(k)},tjCk)) = _ +,(k)(d, 1 log d,/+ (1 - d;j)log(1 - d,j))
i=l

rrl m

-(_0 - d;j)+,Ck))log(_(1 - d,_),-r_Ck))
i=1 i=1

rr/

-(_ d,j _,(_)) Iog((_ du _,(k)) (39)
i--'-I i=1

Another alternative to DP-based algorithms is the Certainty Equivalence technique. In this approach, we

compute the best test to be applied at every stage, assuming that the tests are reliable, using AO'algorithm
[7] that uses the current posterior probabilities of failures for prior probabilities. Once the test result is

known, the posterior probabilities of the failures are updated using (3) and the best test is computed again
as above.

Both of the above approaches do not mandate that a test cannot be repeated. Hence, a suitable stopping

criterion is necessary in order to terminate the testing process. One stopping criterion is to compute the

expected cost incurred on applying the chosen test and stop testing at the current stage if the computed

cost is greater than the expected cost at the current stage. Another stopping rule would involve pruning

the ambiguity group at every stage based on the posterior probabilities and stop when the ambiguity group

of faults contains a single fault. A reasonable pruning rule can be devised by the following consideration:

if the tests are only very slightly imperfect, then after the application of a fairly large number of tests, the
posterior probabilities of non-existent failure states are reduced to a tiny fraction of their prior probabilities

before testing. Hence, a failure source si could be removed from the ambiguity group at stage k, if

+,(k) < +,(0)/Y.

where Np is a factor suitably chosen (e.g., Np > 100).

(40)

5 Implementation of Dynamic Programming Solution

The sequential testing problem formulated earlier via DP cannot be solved in its original form, since the

state space (consisting of the posterior probability vector) is continuous. Hence, some form of discretization is

necessary for the computer implementation of the DP method for this problem. Even with this diseretization,

we will see that problems having more than 20 failure sources cannot be solved optimally owing to the non-
polynomial time complexity of DP. However, DP can serve as a benchmark against which the performance

of near-optimal algorithms can be compared, at least for problems of small size. In th_ following, we present
an efficient technique to implement the DP reeursion that makes use of "lean" data structures. These data

structures circumvent the explosive storage requirements of DP, while guaranteeing fast access to states.
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5.1 Outline of the technique

Before we get into tile details of state space quantization, let us consider a rough overview of the solution

procedure. Suppose that quantization is already performed and we have a set X = {zi : (1 < i < n,)) of
states at hand. Note that every element xi represents a vector posterior probabilities of failure sources. For

example, a two failure source problem with n, = 3 uniform quantization levels results in xl - (1.0, 0.0),

z2 = (0.5,0.5), and za = (0.0, 1.0). Let us also define an appropriate terminal cost functiou f(.), such that

f(zi) is the cost incurred if no fiJrther testing is carried out at state zi. Note that f(.) depends on the

maintenance/repair philosophy followed. Let d_(zi) represeat the optimal cost-to-go for state zi at stage
k (k = 1,2,...) of testing. For an N-stage DP problem (i.e., no more than N tests would be used before

diagnosis/repair), by definition,

dN(X.i) = f(xi), V 1 < i < n, (41)

Now suppose there are n tests in the system, and it is desired to determine the optimal test to be performed

for every state-stage {(zi, k) : I < i < n,, 1 < k < N - 1}. Let us define the state-mapping functions for the

n tests, Zjp(Zi),Zjf(zi) , 1 < j < n, 1 < i < n,, The definition of the state-mapping functions is as follows:

when test j is applied at state xi, the pass outcome takes the posterior probability state to Z_p(._i) E Xr

and tim fail outcome transforms it to Tjj(z,) E X. Let Pjp(x_) and PjI(x_) be the associated probabilities
of these events conditioned on state xi.

The recursive DP formulation of (4) can be adapted to the above quantized version as follows:

2

1 <i<n,,l<k<N-1 (42)

The index j that maximizes tile above recursion is the best test to apply at stage k. Thus, we initialize this
recursion at k = N with,

JN(x,)--f(zi) 1 <i<n, (43)

and carry through backwards from stage k - N - 1 to k = 1.

However, the compuler implementation of this recursion requires consideration of the following important

issues that directly affect the size of the problems that can be solved:

1. Quantizatlon Scheme: We need to determine the optimal quantization scheme to map floating poillt

probabilities (that can lie anywhere i, [0,1]) to discrete levels. We will see that any simplistic rule to

quantize tim probabilities may result in quantization levels that do not map valid probability states.

2. State Space Data Structures: If the storage is not an issue, then the above recursions can be solved

very easily by precomputing the mapping functions Tjp(xi), Tjy(xi), 1 < j < n, I < i < n,. However,
we will see that the storage requirements are prohibitively high for even small problems with not too

many quantization levels. Hence, we need to determine efficient ways of storing tile discrete probability

states and computing the test-mapping functions on the fly.

In the following, we consider the above issues and present effective solutions that let us push the envelope
in solving such an intractable problem.

5.2 Quantlzation

The problem of probability state quantization is formulated as follows. Consider a posterior probability

state space pm of m dimensions. That is, a valid state p E p,n is a vector of m elements {pt,p2,...,pro}
such that,

m

_-_pi=l.0 O<pi<l V l<i<m (44)
i=1

Suppose we want to uniformly divide the interval [0, 1] into n¢ divisions, i.e., we ordain that the only valid
probabilities are {0, _,2_,..., nq_}, where 6 = 1/nq is the quantization interval, and n¢ + I is the number

of quantization levels. For a specified nq, the objective is to determine a set of m non-negative integers
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{ql,q2,- .-, q,n} such that the vector /_ = {q16, q25,...,qm6} represents the quantized probability state.

Clearly, it is necessary to have,
frl

q, = .q (45)
i=1

Note that various simplistic scalar quantization rules such as {qi = ['pi/6]}, or {qi = [pi/6J), or even

{q; ---- [Pi/6 + 0.5J}, will result in quantlzed states that do not satisfy (45) for most choices of nq. Hence,

we need to devise a vector quantization scheme, that transforms any given probability state to a valid

quantized probability state. A suitable criterion to choose tile integers {qt, q2,.--, qm} could be to minimize

the Euclidean distance between the qnantized and unquantized probability states.

Formally, the optimal choice of the quantization vector q - {ql, q2,- •., qm} minimizes tile Euclidean
distance measure between the absolute and quantized probability states defined by,

wl

d(q) = - q,& (46)
i=1

subject to the constraint,

_ qi = nq (47)
i=!

This is a resource allocation problem with quadratic cost function which has a well-known optimal solution

procedure via greedy approach [5]. This approach starts by assigning zeros to all qi, and incrementing one qi

at a time by 1, that results in the maximum decrease of the cost function in (46). However, a direct application

of this algorithm requires mnq computations of cost function decrements (mnq multiplications). In the

following, we present a technique that converges to the optimal solution requiring at most m 2 computations
of cost function decrements and m divisions. Our technique results in substantial computational savings for

large values of nq.
The basic idea involved in our technique is to compute a fast, but accurate first estimate of the quan-

tization levels, and then use the greedy algorithm from that point on, instead of starting from an all-zero

q vector. With this in mind, let us now consider the following version of the above problem with a tighter
constraint set:

rrl

Minimize d(q) = E(pi - qi6) _" (48)
i=l

subject to the constraint,

q_6<Pi V 1 <i<m, 0<qi (49)

Suppose, the solution to the above version is given by _ = {_1, q2,- -., _m}. The original problem can be
reformulated in terms of this partial solution as follows:

subject to the constraint,

rn

Minimize d(r) = Z(pi - _i6 - ri6) 2
i=l

(50)

]_,; = nq - _-_'_4i (51)
i=1 i=1

If {ri} are constrained to be positive, then an appropriate change of variables results in the same resource

allocation problem as in (46), but with a reduced resource constraint. It can be easily shown that the

resource constraint nq - _n=i qi in the reduced problem can never exceed m. Then, a quick solution of the

problem in (48) would reduce the number of cost function computations from rnnf to rn 2. In the following,
we present the optimal solution to the modified problem and show that {ri} are all positive for the optimal

solution, allowing us to use the greedy approach to solve the reduced resource allocation problem.

Lemma 1 The optimal solution to the modified problem in (48) is given by,

(li = [pi/6j V 1 < i < m (52)
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^ gn

Proof.- Clearly {q,}i=l is feasible. Increasing any {4i} results in an infeasible solution. Decreasing any

{qi} results in cost increase. Hence, {qi};_l is an optimal feasible solution to the problem in (48) and (49).

• rrlLemma 2 The resource variables {_i)i=l of the reduced problem in (50) are non-negative for the optimal
solution.

Proof." It suffices to show that. the optimal solution vector q satisfies

qi_>_i V 1 <i<m (53)

Suppose this is not true, and that for some k, qk = qk - 1. Since the elements in q satisfy (45) and since

the elements in _ sum to an integer less than or equal to nq, there must exist some index i-_ such that

q_- = _-+ 1. Assume without loss of generality that i-a = (k + 1). Now, consider an alternative quantization
vector qa where,

{ _ i=k
q_= _ i=_+1 (54)

qi otherwise

The difference between the cost functions induced by the above two quantization vectors can be written as,

d(q) - d(q a) = (Pk - _6 - _)2 + (P_+l - _+16 + 6) 2

-(p_. - _k,s)2 - (pk+, - qk+t6)2

= ,Sb,k+, - 4_+_ + (4k + 1),5- pk)]
>0 (55)

The final inequality in the above equation follows directly from the definition of (li = [Pi/_J, implying Pi > qi
and (qi + 1)_i >_ pi. Thus we see that a solution q violating the statement of the lemma cannot be optimal.

Hence, it follows that the optimal solution always contains 4 thereby forcing the variables r i in (50) to be
non-negative.

It is instructive to determine the total number of distinct discrete probability states resulting from such
a quantization scheme. This can be formally written as the number of distinct solutions in non-negative
integers for the following equation:

k qi = nq (56)
i

Lemma 3 The total number of distinct discrete probability states arising out of quantization of an m-

dimensional probability space (m failure sources) into nq divisions along each probability coordinate is given
by [rt_+m-l]

\ m-I I"

Proof: Consider a line segment of length nq, with points P0, PI,--., P,, marked out at integer intervals.
Any solution (in positive integers) of (56) corresponds to a decomposition of this segment into m pieces

whose lengths are positive integers. The rn - 1 end points of these pieces (other than ,Do and P,,) must be

chosen from among the nq - I points PI,P2, .,P,,-l. This can be done in (,_,-1_ ways. However, note• " Xm-ll

that we are looking for all non-negative solutions of the problem. Adding m to both sides of (56), we get

m

_(q, + 1) = n, + m (57)
i

Now the variables Yl = ql + 1 are strictly positive if qi are non-negative, and there are (n'm+__l-I) ways of
choosing distinct, positive Yi variables. Thus, the number of non-negative integral solutions is identical and
is (n°+,,,-l_

', m-I I"
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5.3 Data Structures for State Space Representation

In the previous section, we presented the quantization procedure for the discretization of posterior prob-

ability space. The DP recursion described in (42) requires the following fundamental operations to be
performed repeatedly:

• Given a quantized state zi, compute the resulting states Ts._,(xi ) and TjI(xl ) due to pass and fail
outcomes of an admissible test j.

• Access the cost-to-go estimates at the states Tjp(zi) and Tjy(xi ) obtained in the earlier cycle of com-

putation and revise the cost-to-go estimate at zi.

A naive approach to address the above operations is to precompute the mapping functions T0.p(. ) and

Tjf(.), and store the appropriate pointers in each zi, so that Tjp(xi) and Tjy(xi ) states can be accessed

directly from xi for any given test j. This requires an extra storage of n('*___l -l) pointer variables (which

require 4 bytes each on most computer systems), where nq is the number of quantization divisions of each
probability coordinate, m is tile number of failure sources and n is the number of tests. Clearly, a runtime

calculation of these mapping functions and efficient data structures that enable fast access of the transformed

states, would free up so much valuable memory space that we would be able to solve a much larger dimensional

problem than is possible with the above simplistic approach.

However, this approach requires us to devise methods to:

• enumerate and store the quantized states in efficient data structures.

• access the cost-to-go for a given state.

These are no simple tasks, since a simplistic table storage of states (each state is a colle_'_;on of m integers)

takes up [ n'+m- l) m [log10 nq] bytes of memory space on conventional computer systems (assuming that the
\ m-I

integers are concatenated to form a string). And random access of a state in such a table requires an average

of (_,_+m-l)/2 comparisons.
k m-I

In the following, we present a highly storage-efficient, fast-access data structure tuned for this purpose.

We first need to introduce some notation in order to give a formal description of the data structures involved.

Consider a directed graph T = (V, E) where, V is the set of vertices (nodes) and E is the set of edges. In
addition, let T be a directed rooted tree having one vertex which is the head of no edges (called the root)

and each vertex except the root is the head of exactly one edge. The relation (v, w) is an edge of T denoted

by v ---. w. If v _ w, then v is termed parent of w and w is the child of v. Let the function d(v) represent

the depth of the node v in the rooted tree.

In order to illustrate why rooted tree is chosen to represent the set of dlseretized probabilities, let us

consider an example system of m = 4 failure sources and nq = 3 quantization intervals. We then obtain

following quantization vectors (shown in the next page.)

Blanks are used whenever qi remained unchanged from its previous value in order to bring out the

similarity of the enumerated state space to a rooted tree. Also, note that q3 and q4 are intentionally bunched

together, since the last coordinate (in this case q4) is fixed when the first rn - 1 coordinates are defined,
hence its storage can be eliminated. By placing a node at every non-blank entry in the above table and

connecting nodes from left to right, i.e., ql nodes to q2 nodes, q2 nodes to qa nodes, we can form a directed

rooted tree, where every node is a child of just one parent. The nodes in the first layer (ql nodes) can be

assumed to be emanating from a single dummy node q0 for the sake of completeness.
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qt q2 qa, q4
0 0 0,3

1,2

2,1
3,0

1 0,2

1,1

2,0

2 0,1

1,0
3 0,0

1 0 0,2
1,1

2,0
1 0, I

1,0

2 0,0
2 0 0, I

1,0

1 0,0

3 0 0,0

Tile data structure based on tile above directed rooted tree would consigL of tim following elemental

structures: The elemental data structures for representing the above rooted tree and the pseudo-code for

the associated state-access routines are described in Appendix A.

The total number of nodes in such a rooted tree structure is hounded by 2( "'+m-t/ and the combined
_. m-I 1'

memory requirement for a DP scheme utilizing these data structures is no more than 7(n'+__ -_) bytes on
most conventional computer systems. In addition to being inexpensive in terms of storage, note that the

access to the cost and policy corresponding to a given quantized state does not take .more than rn - 1
operations, making it attractive for runtime computation of test mapping functions.

5.4 Terminal Cost Function

As defined earlier, the terminal cost function is the probabilistic cost incurred when the testing is stopped

at a given quantized probability state. We define the following cost function for our DP implementation:

where

f(q) = 1[ + (1 - q(i')/nq)Oni, + _ CMiq(i)/nq (58)

i=l,i#i _

i' = arg miaxq(i ) (59)

This definition corresponds to repairing the component with the highest posterior probability value. It makes

sense to choose this terminal cost because of the following reason: when the test costs are significantly lower

than the false repair costs and missed repair costs (which is usually the case in practice), then there should

be an incentive to apply another test and skew the probability distribution to reduce the entropy of the state.

For instance, the uncertainty in the state (0.1,0.9) is less than that of the state (0.2,0.8) and hence should

have a lower terminal cost. However, the terminal cost difference between the states (0.2,0.8) and (0.21,0.79)

should not be sizable. The above definition conforms to this principle and also gives us a consistent stopping

rule: testing should be stopped when the average cost incurred after applying any test is. higher than the

cost of stopping at the present state.



Submitted to IEEE Trans. on Systems, Man, and Cybernetics 14

5.5 Simulation Results

5.5.1 Comparison with DP

In order to compare the performance of the information heuristics and certainty equivalence with I)P, we
considered two small systems; one with 3 failures and 3 tests and another with 5 failures and 5 tests. For

these systems, it is possible to quantize tile posterior proabilities into very small intervals, thus resulting
in an accurate implementation of the Dynamic Programming recursion. Specifically the two systems we
considered are described below:

Table 1: Parameters of System 1
Number of Faults = 3

Number of Tests = 3

Number of DP Quantization Levels = 500
D-Matrix

110

011

001

Test Costs 1.0 1.0 1.0

False Repair Costs 100.0 100.0 100.0

Missed Repair Costs 100.0 100.0 100.0
Prior Probs of Faults 0.25 0.35 0.4

Table 2: Parameters of System 2
Number of Faults = 5

Number of Tests = 5

Number of DP Quantization Levels = 40
D-Matrix

11000

01100

00110

00011

00001

Test Costs 1.0 1.0 1.0 1.0 1.0

False Repair Costs I00.0 I00.0 100.0 100.0 100.0

Missed Repair Costs 100.0 100.0 100.0 100.0 100.0
Prior Probs of Faults 0.25 0.2 0.3 0.15 0.1

Tables 3-6 show the comparitive performance of various algorithms (multi-step look-ahead DP, multi-

step information heuristics and Certainty Equivalence) for system 1 for various values of test unreliabilities.

Tables 7-10 show the comparitive performance of these algorithm for System 2. Tables 11-12 show the

comparative performance of the information heuristic and certainty equivalence techniques for Graham and

Garey's pathological example [6] with m = 10. Note that INFO(k) denotes information heuristics with k-step

look-ahead, DP(k) denotes dynamic programming with k-step look-ahead, and CE denotes the Certainty

Equivalence technique. It is observed that for low values of test unreliabilities, the heuristic techniques have
resulted in near-optimal solutions. However, their performance degrades as the probabilities of false alarm
and missed detection were increased. Also, it is interesting to note that there is not much difference between

the performances of info-heuristic technique and certainty equivalence approach for systems 1 and 2 for

low values of test unreliabilities. Another interesting observation is that CE resulted in consistently lower

probability of error compared to information heuristics. However, for the worst ease example of Graham
and Gary, CE was always better than the information heuristics.
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Metrics

Ave. Test Length

Ave. Testing Cost
Prob. of Error

Ave. Info Gain

DP(1.)
2.29521

11.3974
0.0455903

0.678008

DP(3)
2.93849

7.88139

0.0247351
0.533618

DP(7) DP(15)
2.94194 2.9416
7.48886 7.1705

0.0227501 0.021155

0.534378 0.535792

Table 3: Comparison of Various DP Methods for Pf-0.05, Pm=0.05(System 1)

Table 4:

Metrics

Ave. Test Length
Ave. Testing Cost
Prob. of Error

Ave. lnfo Gain

INFO(1)
2.29273

11.515
0.0461903

0.678128

INFO(.,2)
2.30669

11.1669

0.0443203
0.677073

INFO(3)
2.54352
11.4625

0.0446153

0.649883

CE

2.29553
11.3658

0.0454103

0.677529

Comparison of Various Heuristic Methods for Pf=0.05, Pm=0.05(System I)

Metrics

Ave. Test Length

Ave. Testing Cost
Prob. of Error

Ave. lnfo Gain

DP(1.)
2.96716

17.9693

0.0750394
0.392182

DP(3)
3.63474

8.04204

0.02205

0.451167

DP(7)

3.63336
7.95276

0.0216099

0.45221

oP(i5)
4.10859

8.39895

0.0214649

0.433815

Table 5: Comparison of Various DP Methods for Pf=0.10, Pm=0.10(System 1)

Table 6:

Metrics

Ave. Test Length_-

Ave. Testing Cost
Prob. of Error
Ave. lnfo Gain

INFO(1) INFO(2)
3.07231 3.08141

12.0591 12.6102

0.0449601 0.0476701
0.456213 0.45486

INFO(3)

3.09564

12.3495

0.0462951

0.453465

CE

3.08723

12.6811

0.0479951
0.453524

Comparison of Various Heuristic Methods for Pf=0.10, Pm=0.10(System 1)

Metrics

Ave. Test Length
Ave. Testing Cost
Prob. of Error
Ave. Info Gain

DP(1)
2.41679

21.4411

0.0952055
0.651796

DP(3)
3.38965

13.1638

0.0490145

0.563471

DP(7)
3.53795
13.4766

0.0497751

0.562667

DP(15)
3.52495

13.8521

0.0517699
0.562444

Table 7: Comparison of Various DP Methods for Pf=0.05, Pm=0.05(System 2)

Metrics iNFO(1) INFO(2) INFO(3) CE

Ave. Test Length 2.56769 2.56358 2.56213 4.41764

Ave. Testing Cost 19.4079 18.9453 19.1493 10.6517
Prob. of Error 0.0842089 0.0819036 0.0829637 0.0312653

Ave. Info Gain 0.667016 0.669341 0.668698 0.519862

Table 8: Comparison of Various Heuristic Methods for Pf=0.05, Pm=0.05(System 2)

Metrics DP(1) DP(3) DP(7 ) DP(15)
Ave. Test Length 3.7586 4.23867 4.30183 6.97485

Ave. Testing Cost 24.868 17.8838 21.7445 16.1277
Prob. of Error 0.105529 0.0682713 0.0872903 0.0458495
Ave. Info Gain 0.426733 0.440533 0.482891 0.28545_1

Table 9: Comparison of Various DP Methods for Pf=0.10, Pm=0.10(System 2)
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Metrics INFO(1) INFO(2) INFO(3) CE
5.10162Ave. Test Length

Ave. Testing Cost
Prob. of Error

Ave. lnfo Gain

3.09077

29.0598
0.129892

0.48225

3.0923 3.08582
29.1433 28.8392

0.130332 0.128832

0.482189 0.483567

19.0721

0.0098944

0.405789

Table 10: Comparison of Various Heuristic

Metrics

Ave. Test Length

Ave. Testing Cost
Prob. of Error

Ave. Info Gain

iNto(l)
17.5606

17.5606

0
0.0241986

Methods for Pf=0.10, Pm=0.10(System 2)

INTO(2) INFO(3)
18.7088

18.7088

0
0.0226679

17.5607

17.5607

0
0.0241994

CE

15.1227
15.1227

0

0.0282088

Table I1: Comparison of Various Methods for Pf=0.10, Pm=0.10(Gary' model with m=10)

Metrics

Ave. Test Length
Ave. Testing Cost
Prob. of Error

Ave. lnfo Gain

[NFO(I)
I6.4974

16.4974

0

0.0257201
INFO(2)t   rOCa)

16.4957 17.4856

16.4957 17.4856

0 0

0.0257262 0.0242757

CE

9.92901

9.92901

0

0.0424652

Table 12: Comparisonof Various Methods for Pf=0.05, Pm=0.05(Gary' model with m= 10)

6 Top-Down Graph Search Algorithms

Tile top-down algorithms described iu [7] can be readily applied even when the tests are imperfect. This is

because, the HEFs (required for AO'based algorthms) and the information gain expressions depend only on

the posterior probability distribution of the failure sources at the current ambiguity node. These posterior

probabilities can be computed via the Bayes rule given in (3). However, we found that the AO'based
algorithms are not useful due to the explosion of the diagnostic strategy even for moderately sized systems.

On the other hand, the top-down information heuristic algorithms coupled with the ambiguity pruning

technique described earlier, enabled us to solve large systems. Tables 13-18 demonstrate the performance

of top-down information heuristic algorithm for various randomly generated systems of different sizes and
for various values of false alarm and missed detection probabilities of tests. Note that, c, denotes the false

alarm probability, and /3 denotes the missed detection probability. The following performance indicators
;yore collected and listed in these tables:

* Jc is the expected testing cost

• J_ is the expected repair cost composed of the missed repair and false repair costs

• JN is the average ambiguity group size

• nt is the number of leaf nodes in the diagnostic strategy

• n, is the total number of nodes in the decision tree

We can see that even the slightest uncertainty in the test outcomes results in large diagnostic trees with

increased testing and repair costs, albeit with tolerable values of average ambiguity group sizes. Table 19

shows the performance of the top-down information heuristic algorithm for random systems of various sizes

with fixed test uncertainties (a = 0.01,/3 = 0.01). We can see that a system containing as many as 2000
failures and 2000 imperfect tests is solved in less than 30 minutes.
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(0.00,0.00)
(0.01,0.00)
(o.o2,o.oo)
(o.o3,o.oo)
(o.o4,o.oo)
CO.O5,O.O 

Jc J_ J_r I nt n_

-6.468 , 0.000 I 1.000_--I 100 " 199
8.047

8.184

8.197

9.608

9.722

0.093 I 1.002 I 433 , 865
0.013 I 1.000 I 452 903

0.010 I 1.000 I 448 895

1.236 I 1.029 I 938 1875

1.678 I 1.035 I 965 1929

Time(secs)
0.29
1.35

1.36

1.35
3.26

3.31

Table 13: Performance of Top-Down

CO.OO,O.OO)6.468
(0.00,0.01) 7.893

(0.00,0.02) 8.ooo
(0.00,0.03) 8.055
(0.00,0.04) 9.275

(0.00,0.05) 9.391

Algorithm for a (I00,100) system with false alarms only

Jr ,/N nt n, Time(secs)
0.000 1.000 100 199 0.29

0.084 1.001 424 847 1.33

0.003 1.000 439 877 1.32

0.002 1.000 437 873 1.33

1.231 1.030 873 1745 3.08

1.582 1.033 919 1837 3.19

Table 14: Performance of Top-Down Algoritlun for a (100,100)system with missed detections only

(o,15) dc d_ dm nt n, Ti me(sees)

(0.00,0.00) 6.468 0.000 1.000 100 199 0.29

(0.01,0.01) 9.013 0.274 1.005 889 1777 2.95

(0.02,0.02) 9.129 0.037 1.001 947 1893 3.01

(0.03,0.03) 9.155 0.025 1.000 952 1903 3.03

(0.04,0.04) 11.410 8.603 1.266 2650 5299 13.40

(0.05,0.05) 11.434 10.964 1.286 2908 5815 14.27

Table 15: Performance of Top-Down Algorithm for a (100,100) system with false alarms and missed
detections

( o ,_) Jc Jr fin ns -¢

(0.00,0.00) 7.417 0.000 1.000 200 399

(0.01,0.00) 8.677 0.906 1.016 785 1569

(0.02,0.00) 8.874 0.311 1.005 926 1851

(0.03,0.00) 8.984 0.227 1.003 953 1905

(0.04,0.00) 10.157 2.159 1273 1874 3747

(0.05,0.00) 10.208 3.006 1.088 1910 3819

Time(sees)
1.26

6.43

6.64

6.67

16.39

16.63

Table 16: Performance of Top-Down Algorithm for a (200,200) system with false alarms only

(0.00,0.00) 7.417 0.000 1.000 200 ' 399

(0.00,0.01) 8.640 0.841 1.015 763 1525

(0.00,0.02) 8.883 0.333 1.006 886 1771
(0.00,0.03) 9.011 0.169 1.003 924 1847

(0.00,0.04) 10.235 2.029 1.068 1790 3579

(0.00,0.05) 10.284 2.744 1.079 1848 3695

.Time(sees)
1.27

6.08

6.27
6.34

15.46

15.65

Table 17: Performance of Top-Down Algorithm for a (200,200) system with missed detections only
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Jc Jr
(0.00,0.00) 7.417 0.000

(O.Ol,O.O1) 9.518 2.538
(0.02,0.02) 9.917 0.8.59

(0.04,0.04) 12.062 11.625

(0.05,0.05) 12.122 16.071

JN n_ n¢ Time(sees) _
1.000 200 399 1.26
1.048 1462 2923 13.39

1.015 1907 3813 14.28
1.540 4839 9677 64.50

1.635 5148 10295 66.62

Table 18: Performance of Top-Down Algorithm for a (200,200) system with false alarms and missed
detections

m,n nl ne Time(secs)
500 2069 4137 90.26

I000 3094 6187 378.89

1500 4136 8271 891.50

2000 5267 10533 1653.06

Table 19: Performance of Top-Down Algorithm for systems of various sizes with a = 0.01,/3 = 0.01

7 Sunanaary

In this paper, we considered the problem of test sequencing in the presence of imperfect tests. Tile test

sequencing problem is a partially observed Markov decision problem (POMDP), a sequential multi-stage
decision problem wherein the states are probal)ilities of tile set of possible failure sources and information

regarding the states is obtained via the results of imperfect tests. The optimal solution for this problem can be

obtained by applying a continuous state Dynamic Programming (DP) recursive equation. However, the DP

recursion is computationally very expensive owing to the continuous nature of the state vector comprising
the probabilities of faults. In order to alleviate this computational explosion, we presented an efficient

approach for implementing the DP recursion for this problem. In addition, we presented multi-step DP,

multi-step information heuristics and certainty equivalence algorithms for interactive diagnosis of systems

with imperfect tests. We also considered various problems with special structure (parallel systems) and

derived closed form solutions/index-rules without having to resort, to DP. We also presented computational

results demonstrating the effectiveness of the information heuristic based top-down graph search algorithm.

A Data Structures and Pseudo-code for DP Implementation

RootedTreeNodc

{
NumberOfChildNodes (Integer)

ArrayOfChildNodes (Pointer to RootedTreeNode)
lndexlntoCostVector (Integer)

}
Data Structure to Represent a Node in the Rooted Tree

CostVectorNode

{
EstimateOfCostToGo (Floating Point Variable)

Policy (Integer)

}
Data Structure to Represent a Node in the Cost Vector

Procedure P_otedStateTreeConstruetor
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Inputs:

RootedTreeNode CurrentNode By Reference
Integer SumTillNow By Value

Integer FaultNum By Value
Integer Statelndex By Reference

CostVectorArray CostVector By Reference

Integer NumLevels By Value

IntegerArray CurrentState By Reference

{
if(FaultNum = NumFaults- 1)

{
CostVector[S tatelndex].Cost =

TerminalCostFunction(CurrentState)
CurrentNode.IndexlntoCostvector = Statelndex

Statelndex = StateIndex+l
return

CurrentNode.NumberOfChildNodes = NumLevels - SumTillNow + 1

(create storage for childnodes too)
for i=l to CurrentNode.NumberOfChildNodes

{
CurrentState[FaultNum+ 1] = i

hwoke RootedStateTreeConstructor 0 with following inputs:

CurrentNode.A rrayOfChild Nodes[i]
SumTillNow+i

FaultNum+l
Statelndex

CostVector
NumLevels

CurrentState

}
}
Algorithm for Rooted Tree Construction

Procedure Get Cost AndPolicyForQuantizedState

Inputs:

RootedTreeNode CurrentNode By Reference

CostVectorArray CostVector By Reference
Integer NumFaults By Value

IntegerArray CurrentState By Reference

Outputs:
Cost

Policy

{
for i=l to NumFaults-1

(
CurrentNode =

CurrentN°de'ArrayO fChildN°des[Quantized-StateVect°r[i]]
return

}

Statelndex = CurrentNode.lndexlntoCostVector
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Cost = CostVector[Statelndex].EstimateOfCostToGo

Policy = CostVector[Statelndex].Policy

}
Algorithm for Accessing Cost and Policy of a Quantized State
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Abstract

In this paper, we consider the problem of constructing optimal and near-optimal test se-

quencing algorithms for multiple fault diagnosis. The computational complexity of solving the

optimal multiple-fault isolation problem is super-exponential, that is, it is much more difficult

than the single-fault isolation problem, which, by itself, is NP-hard 1[7]. By employing concepts

from information theory and AND/OR graph search, we present several test sequencing algo-

rithms for the multiple fault isolation problem. These algorithms provide a trade-off between

the degree of suboptimality and computational complexity. Furthermore, we present novel di-

agnostic strategies that generate a diagnostic directed graph (digraph), instead of a diagnostic

tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall di-

agnostic strategy reduces substantially. The algorithms developed herein have been successfully

applied to several real-world systems. Computational results indicate that the size of a multiple

fault strategy is strictly related to the structure of the system.

IThis means that the computational requirements of an optimal algorithm cannot be bounded by a polynomial

function of the number of failure sources and/or the number of tests.

, l



1 Introduction

The complexity associated with the maintenance of large integrated systems, such as the space

shuttle or a modern aircraft consisting of mechanical, electro-mechanical and hydraulic subsystems,

presents formidable challenges to manufacturers and end users. This is due to the large number of

failure sources and the need to quickly isolate and rectify such failures with minimal down time. In

addition, for redundant (fault-tolerant) systems and for systems with little or no opportunity for

repair or maintenance during their operation (e.g., Hubble telescope, space station), the assumption

of at most a single failure in the system between consecutive maintenance actions is unrealistic.

Thus, the efficient maintenance of complex systems requires advanced diagnostic algorithms for

multiple fault isolation.

A review of existing literature [13] showed that multiple-fault diagnosis using artificial intelli-

gence techniques is too expensive and slow for large systems. Davis [2, 3] described a fault diagnosis

system that reasons from tlle knowledge of structure and behavior. Failure candidate generation in

this approach occurs ]n three basic steps: circuit simulation and discrepancy collection, potential

candidate determination, and global consistency determination using constraint suspension tech-

niques. The approach of Davis [2, 3] can be extended to diagnose multiple faults. However, this

approach would require the application of constraint suspension to all possible combinations of

components, and consequently, suffers from computational explosion. De Kleer and Williams [4]

presented a model-based approach to fault diagnosis. By keeping track of multiple sets of con-

sistent and inconsistent components, their algorithm generates minimal sets of faulty candidates,

rather than generating all possible candidates. This approach requires the complete specification

of system components, the state and observed variables associated with each component, and the

functional relationships among the state variables. However, the precise information required by

these models is typically not available for complex systems and is too costly to obtain. In addition,



becauseof extensiveuseof functional simulation, this approach is extremely slow, and, thus, is

not appropriate for fault diagnosis in large scale systems with the complexities of many orders of

magnitude more than the examples presented in [4]. Sheppard and Simpson [19] provided a formal

analysis of the multiple failure problem in the context of information flow model. They discussed

the computational complexity of several algorithms for diagnosing multiple failures, and developed

algorithms to generate multiple fault diagnoses for a given ambiguity group. However, this method

does not take into account the failure probabilities of components or test costs.

In this paper, we present several multiple fault test sequencing algorithms. First, we extend

the single-fault strategy of our previous work [7, 8, 9, 11] to diagnose multiple faults by succes-

sive replacement of single fault candidates. Using this strategy, we seek to isolate the potential

single-fault candidates, then double-fault candidates, and so on. Since a component may be re-

paired/replaced before confirming that it is indeed faulty, the probability of false alarm error or

RTOK (retest OK) is higher than that with multiple fault strategies that use all informative tests

before repairing a component in the system. Then, we focus on developing a class of Sure strategies

[14] for diagnosing multiple faults that employ all informative tests before diagnosis. The basic idea

of these strategies is to find one or more definitely failed components, while not making an error

when other co-existing faults are present. Using these algorithms, the storage and computational

complexity of the multiple fault diagnostic strategy are reduced substantially.

The paper is organized as follows. In section 2, we formulate the test sequencing problem.

Because of extensive use of single fault test sequencing algorithms in solving the multiple fault

diagnosis problem, we describe single fault test sequencing algorithms in section 3. In section 4,

we present the problem of diagnosing multiple failures using a single fault diagnostic strategy. In

section 5, we present an extended single fault strategy to diagnose multiple failures. Near-optimal

multiple fault strategies are discussed in section 6. In section 7, we summarize the results and



discussfuture researchissues.Throughout,an examplefrom [7] will be usedto illustrate the

conceptsand the proposeddiagnosticstrategies.In addition,weapplyour algorithmsto several

real-worldexamples.

2 Problem Formulation

Themultiple fault test sequencingproblem,in its simplestform, is definedby the five-tuple(

S, P, T, C, B), where

1. S = {sl, ..., sin} is a set of independent failure sources associated with the system;

2. P = [p(Sl),..., p(sm)] is the a priori probability vector associated with the set of failure sources

S;

3. T = {tl, t2, ..., t,_} is a finite set of n available binary outcome tests, where each test tj checks

a subset of S;

4. C = {cl, c2, ..., cn} is a set of test costs measured in terms of time, manpower requirements,

or other economic factors, where cj is the cost of applying test tj;

5. B = [bij] is a binary matrix of dimension m x n which represents the relationship between

the set of failure sources oc and the set of tests T, where bl i = 1 if test ti monitors failure

source si; otherwise, bij = 0.

The problem is to design a testing strategy that unambiguously isolates the failure sources with

minimum expected testing cost f = _slc_s __,tj_PT"_ p(SI)cj, where PTI is the set of applied tests

(performed tests) in the path leading to the isolation of the set of failure sources Sz, and p(Sz)

is the probability of the set of failure sources Sx (see Appendix A). The AND/OIl. sequential test

strategy is represented in the form of a tree or a graph, where the OR nodes represent the suspect



setsof failure sources,AND nodesare testsappliedat variousOR.nodes,and the leavesare the

isolatedfailuresources.

For notational convenience,wedefinefailure signatureFSi to denote a set associated with

failure source si that indicates all the tests that monitors failure source si, i.e., F& = {tjlbi j -

1 for 1 _< j <_ n}. Furthermore, we assume that the failure signature of a multiple-failure is the

union of failure signatures of individual failures.

3 Single Fault Testing Strategies

In a single fault strategy, it is assumed that the system is tested frequently enough that at most

one component has failed. The single fault diagnosis problem, in its simplest form, is the five-tuple

(S, P, T, C, D), wliei_e

• S =oe v {so}={so,Sl,...,s,n} is a set of failure sources, where s0 is a dummy failure source

denoting fault-free condition and V denotes the union of two sets;

• P =[po, pl,..., pro] is the conditional probability vector associated with the set of failure sources

S based on a single fault assumption, where P0 is the probability of fault-free condition, So.

Iu Appendix A, we show that the conditional probability Pi is related to the unconditional

prior probabilities {p(si)} via:

1
po = (1)

1-p(_k)

',_,%
Pi= for i= l,...,m

1 + ET=,

• T and C are as defined in Section 2;

• D = [dij] is a binary test matrix of dimension (m + 1) x n, where doj = 0 for 1 _< j _< n, and

dij=bij for l<i<mand l_<j<_n.
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The algorithms for designing optimal single-fault diagnostic strategies are based on dynamic

programming (DP) [1], and AND/OR graph search procedures. The DP technique is based on

a bottom-up procedure, and has storage and computational requirements of O(3 n) for even the

simplest test sequencing problem. The AND/OR graph search algorithms are top-down heuristic

graph search procedures that employ a cost-to-go estimate to speed up the solution search process

[7]. A novel feature of this approach is that the cost-to-go estimate (termed the Heuristic Evaluation

Function (ttEF)) is derived from Huffman coding and entropy. These information theoretic lower

bounds ensure that an optimal solution is found using the AO*, HS, and CF search algorithms

[9]. In addition, because of the top-down nature of the AND/OR graph search algorithms, several

near-optimal search algorithms have been derived: (1) AO_ algorithm, (2) limited search AO*,

and (3) Multi-step information heuristics. Furthermore, because of-ttleir top-down nature, these

algorithms extend naturally to: (1) modular diagnosis, (2) precedence constraints, setup operations,

and resources and (3) rectification. The algorithms have been implemented in a software package,

termed TEAMS (Testability Engineering And Maintenance System[9]). For convenience, these

algorithms are referred to as the TEAMS-S algorithms [11].

Example 1.a: In this example, we consider the same syst_ti as in [7]. In this system, there

are five failure sources sl,..., ss. The set of five tests, labeled tt,..., ts, may be used to identify the

unknown failure sources. The test matrix, along with the a priori probabilities of failure sources

and test costs, is shown in Table 1. Based on the assumption of at most a single fault in the system,

the set of failure aspects S = {s0,Sl, ..,85}, with the concomitant conditional probability vector

P =[0.700, 0.01, 0.020, 0.100, 0.050, 0.120]. An optimal single fault test strategy for this example

is shown in Figure 1. For this test strategy, the average test cost is J = _=o _']_t_ePT_ pi.cj=2.18,

where PTi is the set of applied tests (performed tests) in the path leading to the isolation of failure

source si E S.



FAILURE

SOURCES

81

32

83

$4

$5

TESTS

TEST COSTS cj

i 1 l 1 1

_I t2 t3 _4 t5

0 1 0 0 1

0 0 1 i 0

1 0 0 1 1

1 i 0 0 0

1 1 1 1 0

FAULT

PROBABILITIES

0.014

0.027

0.125

0.068

0.146

Table 1: Test Matrix, a Priori Probabilities and Test Costs for Example 1.a

OR NODE

AND NODE
P I

[- _ & p => TEST PASSESf => TEST FAILS

Figure 1: Single-fault Test Strategy for the System of Example 1.a

The single fault assumption may not be valid in situations where the opportunity for frequent

maintenance does not exist. In such cases, the single fault strategies can give wrong diagnosis when

multiple faults occur. For example, consider a system with S = {Sl,S2, s3}, T - {tl, t2}, TS1 =

{S1,83} and TS2 = {s2, s3}, where test signature TSj is a set associated with test tj that indicates



all the failuresourcesdetectableby test tj, i.e., TSj = {sl]bij = 1 for 1 < i < m}. Suppose that

we perform both tests and that they both fail. Under the single-fault logic, we would conclude

that s3 is faulty. However, if 31 and s2 were both faulty, we would observe the same test results.

Consequently, the single-fault strategy would make an incorrect diagnosis, when sl and s2 are both

faulty.

In the following, we define hidden and masking false failures, which are possible multiple fault

candidates at each leaf node of the single fault diagnostic tree. The set of hidden failures HF/ for

failure source si is given by:

tt _ = {sj [j ¢ i and (F Si Cl PTi ) O (F Ej n PTi ) = (FSi N PTi ) }

In words, HFi consists of tllose failure sources whose failure signatures corresponding to the

set of applied tests PTi in the path leading to the isolation of failure source si are masked by the

failure of si, i.e., subset of the failure signature of si restricted to PTi. The set of masking false

failures MSi for failure source si consists of those sets whose failure signatures corresponding to

PTi add up to mask the failure of si, i.e.,

= {XlX c_(S - sd, Uv,keX(fSk n Prd = (FS Cl PTi)}

The multiple fault ambiguity group at a leaf node of the single-fault diagnostic strategy where

failure source si is isolated consists of masking faults MSi and any combination of masking faults

MSi and hidden faults H_ with si, i.e., MS/U (MSi x {si}) U (2 HF_ x {si)), where x denotes

cross product function and 2 HFi is the power set of HFi. The problem of identifying the set of

hidden failures is relatively easy to solve. In contrast, the problem of enumerating the masking false

failures for each failure source si is computationally expensive. Typically, it requires O(]PTi]2 "n)

or 0(2 '_) operations [10].



4 Multiple-Fault Isolation Using Single-Fault Strategy

One often stated premise is that one can apply single fault strategy repeatedly, until all the

faults are isolated. This strategy works well when there are no masking false failures at the leaf

nodes of the single-fault diagnostic tree. However, if the set of masking false failures at the leaf

nodes are not empty, the single fault strategy will give wrong diagnosis. In order to illustrate this

case, let us assume that 31 and s3, in Example 1.a, are faulty. Based on single fault diagnostic

tree, t2 = f and t4 = f; and we would assume that s5 is faulty. After repairing/replacing sh, we

would perform more tests from the root OR node, t_ = f and t4 = f, i.e., the same test results

as before. This is because {81,33) e MSs = {{sl,s2}, {sl,s3}, {s2,s4}, {s3,s4}, {81,32,$3) ,

{s2,s3, s4}, {s,,s2,s4}, {s,,s3, s4}, {sl,s2, s3, s4}}. In this example, 18 failures out of 32(= 2s)

multiple failures can not be isolated by repeatedly using the single fault diagnostic tree. This is

because ]MoChl + IMSs x (ss}l = 18. The occurrence of masking false failure sets is fairly common.

In order to illustrate this, we generated 10 random systems with five components, five tests, P =[

0.5, 0.5, 0.5, 0.5, 0.5], and C = {1,i,1,1,1}. Only 2 systems did not have masking sets, and the

average size of masking sets based on all systems was 6. Therefore, on the average, 12 multiple

failures out of 32 failures can not be isolated in these systems via repetitive application of single

fault logic.

In addition to this set of synthetic problems, we have considered several real-world systems.

These include:

1. Anticollision Light Control System of the Sea Hawk helicopter with 43 failure sources and 53

tests,

2. An amplifier-filter with 80 failure sources and 25 tests,

3. 1553 Data Bus with 176 faults and 53 test points,



System m n % Leaves with Masking False Failures

Anticollision system 43 53 47.50%

Amplifier Filter 80 25 17.86%

1553 Bus 176 53 20.59%

Goodrich (EDIF) 898 250 0%

Phase Decoder (EDIF) 1644 2147 3.02%

Table 2: Percentage of Leaf Nodes with Masking False Failures

4. A circuit board model (courtesy of Goodrich Aerospace) generated from an EDIF (Electronic

Design Interchange Format) 2 netlist containing 898 faults and 250 tests,

5. Phase Decoder model (public domain test circuit for EDIF parsers) with 1644 faults and 2147

tests.

Table 2 shows the percentage of leaf nodes which contain at least one masking false failure. In

conclusion, single fault diagnostic tree can be used to isolate multiple failures in systems with no

masking sets. However, as the above results show, the masking sets in most systems are not empty.

Consequently, practical multiple fault diagnosis algorithms are needed.

5 Multiple Fault Diagnosis Using an Extended Single Fault Testing Strategy

In this approach, we invoke a single fault strategy, and repair/replace the identified component

at each leaf node, if any. Then, we check whether the repaired/replaced component at each leaf

node is definitely faulty or not. If for any test t./that failed previously, the cardinality of TSj - G is

one, i.e., TSj-G contains only one failure source, then the corresponding failure source is definitely

faulty, where G is the union of test signatures of previously passed tests. If the repaired/replaced

2http: / /www.cs.man.ac.uk/cad /EDIFTechnicalCentre.
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componentisdefinitelyfaulty,weapplyadditionaltests,if necessary,to isolatetheremainingfaults.

Additional testscanbe appliedfrom eitherthe root OR node,or from the first failed test in the

path leadingto the identificationof previousfaults. This processensuresthat wedo not comeback

to the sameleafnodetwice.

Alternatively,if thereplacedmoduleisnot definitelyfaulty,thereexistothersetsof components

whichhavethesamefailuresignatureasthefailuresignatureofreplacedmodule,i.e.,maskingfalse

failures.In this case,if westart fromthe root OR nodeor the first failedtest in the path, wemay

reachthesameleafnode.In orderto solvethis problem,weremovethereplacedmodulesfrom the

ambiguitygroupat the currentstageof diagnosis,andinvokethesinglefault strategyTEAMS-S

to isolatethe remainingsuspectedcomponents.Then,werepair/replacetheidentified modulesat

eachleafnode. If the repaired/replacedmoduleat a leafnodeof this tree is definitely faulty, we

apply additionaltestsfrom theroot OR nodeor from the first failedtest after last repair. On the

,- other hand, if the identified module at a leaf node is not definitely faulty, we update the ambiguity

group and invoke single fault strategy as before. This procedure is continued until no test gives

further information or the system is fault-free. The extended single fault algorithm is formalized

in the next subsection.

Example 1.b: In this example, we consider the same system as in Example 1.a. The extended

single fault diagnostic strategy for this example is shown in Figure 2, where the ACTION nodes

represent the actions to be performed at the corresponding OR node. Note that the shaded parts

of the tree are the same as those in a single fault diagnostic tree of Figure 1. The average testing

cost for this case is J =2.780. The joint probability that s5 is good, and is repaired/replaced is

0.0103.

We applied the extended single fault strategy to several real-world systems. Table 3 shows the

times taken to construct an extended single fault diagnostic strategy for several real-world systems.

11
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Figure 2: Extended Single-fault Strategy to Diagnose Multi-faults in Example 1.a
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System

Anticollision system

_.mplifier-filter

1553 Bus

Goodrich (EDIF)

Phase Decoder (EDIF)

(m_ n)

(43, 53)

(80, 25)

(176,53)

(898, 250)

(1644, 2147)

1

0.27

0.18

0.27

0.88

41.59

Time (sec)

# Repair Limits

2 3

2.41 2.93

0.63 0.88

1.8I 1.81

0.88 0.88

370.00 691.94

All

6.93

0.90

1.81

0.88

1132.55

Table 3: Solution Times in Seconds Based on Extended Single Fault Strategy for Various Real-world

Systems on a SPARC-10

Table 4 shows the number of nodes in the extended single fault diagnostic strategies for these

real-world systems. 3

One drawback of the extended single-fault strategy is that the probability of repairing/replacing

a good component, i.e., false alarm error or RTOK (retest OK), is higher than that with multiple

fault strategies that employ all informative tests before repairing a component in the system (see

section 6.2). Furthermore, in the case of very large systems, it is practical to solve multiple fault

isolation problems up to a certain cardinality L > 1, e.g., single or double failures. This is based on

the premise that multiple faults of large cardinality are much less likely to occur. However, in an

extended single fault strategy, if we stop expanding the diagnostic tree after limited repair actions,

say L, it does not mean that we can diagnose multiple faults up to size L using the same tree. This

is because a component may be repaired/replaced before confirming that it is indeed faulty.

Sln order to reduce the search space, the TEAMS-S algorithms preprocess the binary. D-matrix as follows: (I)

they collapse all the failure sources with the same failure signature to create a new representative failure source, and

(2) they ellminate the redundant tests [10] (see section 6.3).
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System

Anticollision system

Amplifier-filter

1553 Bus

Goodrich (EDIF)

Phase Decoder (EDIF)

m, n)

(43, 53)

(SO,25)

(176,53)

(S9S,250)

(1644, 2147)

1

# Nodes

79

55

67

37

993

#Repair Limits

2 3 All

897 1065 2371

231 347 347

417 417 417

37 37 37

8919 16389 25663

Table 4: Number of Nodes in Extended Single Fault Strategy for Various Real-world Systems

5.1 Extended Single-fault Algorithm

Extended single fault algorithm is a recursive function, and must be invoked as Extended-

Single-Fault( OR node, SS), where

• OR node is the current OR node,

• SS denotes the suspected faults at the current OR node.

Global variables:

* the root OR node of the diagnostic tree,

• the set of failure sources S = {sl, ..., sm},

• the a prior probability vector P = [p(sl), ..., p(sm)],

• the set of available tests T = {tl,t2, ...,t,,},

• the set of test costs C = {Cl,C2, ...,c,,},

• the binary test matrix B = [bo].

Initialization:

• OR node=root OR node,

• SS=s=so{so}.

Algorithm: Extended-Single-Fault( OR node, SS)

1,1



step i:

step 2:

step 3:

Evaluate the conditional probability of the faults in SS using P, P,.

Expand the diagnostic tree from the OR node by invoking

TEAMS-S (SS, Ps, T, C, Ds), where D, contains the failure

signatures of the failures in SS.

DO for each UNSOLVED leaf node,

step 3.1: Action: repair/replace the identified component, if any.

step 3.2: G *-- {repaired/replaced failure sources) O,_=pTSi

for ti in the path from OR node to the leaf node.

step 3.3: SS +-- SS- G.

step 3.4: IF for any failed test tj in the path from OR node to

the leaf node, ITSj - G I = 1 THEN

- IF SS = {so},
Action: stop.

ELSE

Action: Apply additional tests from the
root OR node or the first failed test

after the OR node.

END

ELSE

+- S$ v {so}.
- Extended-Single-Fault( leaf node, SS).

END

END

6 Multiple Fault Testing Strategies

One approach that employs all informative tests before repairing/replacing a component is to

consider all possible combinations of failure sources, i.e., 2s, and generate an optimal multiple

fault diagnostic strategy using the single-fault test sequencing algorithm TEAMS-S. However,

the storage and computational complexity of optimal multiple-fault isolation problem is super-

exponential in m. In order to reduce storage complexity, we use a compact set notation [6], and

in order to reduce the computational complexity, we present a class of Sure diagnosis strategies for

multiple fault isolation.

6.1 Compact Set Notation

Following Grunberg et al. [6], we use the compact notation A= O(L; FI,...,FL; G) to denote

the multiple fault ambiguity group at each OR node. The F_ for i = 1,..., L and G are subsets

15



of S = {so, sl, ..., sin); G is the set of known good failure sources (failure free sources), and Fi for

i = 1, ..., L are sets that are known to contain at least one definitely failed failure source each, i.e.,

@(L; F1, F2, ..., FL; G) = {X C_S[

XA/_ _ 0 for i = 1,...,L, and XAG = O) (2)

where A denotes the intersection of two sets. In the following, we summarize some of the properties

of compact set notation [14, 15, 16]:

1. Multiple fault logic using the compact set notation is as follows: the initial hypothesis set is

the set of all subsets of S, i.e., A= 0(1; F1 = S ; G = 0). After performing a test, say tj, the

hypothesis set A = O(L; F1,..., FL; G) is decomposed as follows:

A .--- / O(L;(F1ATS_),...,(FLATS_);(GVTSj)) iftj passes

( O(L + 1; F1, ..., FL, TSj A GO;G) if tj fails

where superscript c denotes the set complement, i.e., G c = S - G.

2. If E __DFi for some i (that is, E is a superset of Fi), then 0(L + 1; F1, ..., FL, E; G)=0( L;

El, ...,FL; a) [6].

3. A = O(L; F1, ..., FL; G) = O(L; F1 AG c, ..., FL A GO; G) [6].

4. Given a set of previously applied passed tests Tn C_ T and failed tests T l C T, the multiple

fault ambiguity group at the current stage of diagnosis can be generated directly as follows:

O(L; F1, ..., FL; G), where G = Vt, eTpTSi, L=[TI[+I, FI=S (see the first property), and

Fi+I=TSj ^ G c for i = 1, ..., ITI[ and tj _. TI; and then, employ property 2 to remove super

sets from the set F = {F1, ...,FL).

5. If [T![ = 0, then L = 1 and so E F_. If [TI[ > 0, none of the F/'s contains So (see the first

property).
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6. The worst case storage complexity of compact set notation for an OR node is O(mn). This

is because the ambiguity group O(L; F1, F2, ...,FL; G) contains all solutions of the following

constraint equations:

Wy>e

yi = 0 if gi = 1, for i = 0, ..., m

where y_ = [Y0, Yt, ..., Ym]_ is a binary vector; e is the L-dimensional vector of l's; W = [wij]

is a binary matrix of dimension L x (m + 1), and wij = 1 if sj E Fi, otherwise wij = 0; and

g = [go,gl,...,g,_Y is a binary vector such that gj = 1 if sj E G, otherwise gj = 0. Using

this notation, we need to store the binary matrix W and binary vector g at each stage of

diagnosis. Therefore, the storage complexity of this approach is O(mn) at each OR node,

since L _< n and each test is applied at most once in each path of the diagnostic tree.

7. The failure sources belonging to Fi with cardinality IFil = 1 are definitely faulty (one-for-sure

condition). This can easily be shown using equation (2).

6.2 Sure Strategies for Multiple Fault Diagnosis

In this section, we present three diagnostic strategies, Sure 1-3, that seek to find definitely

failed components, even though there may be others still undiagnosed. Thus, these strategies

isolate f_lures one (or more) at a time, while not making an error when multiple faults are present.

The framework for Sure strategies is sketched in Figure 3.

The three basic ingredients of Sure 1-3 are: (i) minimal candidate generation, (ii) minimal

candidate isolation, and(iii) multiple fault propagation. The minimality property implies that a

particular candidate includes the minimum number of failure sources that explains all test results

observed so far (if any). Consequently, the inherent combinatorial explosion that occurs in gener-

ating an optimal multiple fault strategy is reduced substantially. Before describing the algorithms,

we define minimal (irreducible) set and hitting set of a set of subsets:
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____ Repair/ Replace ]

I

Figure 3: Framework of Sure Strategies in a Test-and-repair Cycle

Definition 1: A minimal or irreducible set for a collection of subsets Q = {Q1 ,---, Qk} is a set

I(Q) c Q such that I(Q) = Q - {Qi[3QjE Q and Qj c_ Qi}, i.e., I(Q) is equal to set Q without

any super set.

Definition 2: A hitting set for a collection of sets Q = {Q1,---, Qk} is a set H(Q) ={HI, ..., Hq}

such that Hj C_Vl<_i<kQi forj = 1,...,q, and Hj AQi _ ¢ for i = 1,...,k.

Based on these definitions, it can be shown that [12]:

Lemma 1: The minim_l _et of a multiple fault ambiguity group A = @(L; F1, ..., FL; G) is the

minimal hitting set for the collection of sets F = {F1, ..., FL}, i.e., I(A) = I(H(F)).

Surel-Sure3 algorithms are recursive procedures. At each iteration, we consider the minimal

candidate set of the multiple fault suspect set corresponding to the OR node at that stage. Re-

iter [12] has derived an algorithm to determine the minimal hitting set of a collection of sets, and

Greiner et al. [5] have presented a correction to the Raiter's algorithm. We use this technique

to determine the minimal hitting set of F = {F1,...,FL} at an OR node. After determining the

minimal candidates of a multiple fault suspect set at the current stage, we evaluate the conditional

probabilities of minimal candidates using Bayes' rule. Then, we invoke the single fault strategy
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TEAMS-S to isolatethesecandidates,and propagatemultiplefault suspectset throughthe re-

sultingdiagnostictree. Notethat usingthefourth propertyof compactsetnotation, it is sufficient

to generateandstoremultiple fault ambiguitygroupat the leafnodesof this treeonly. Werepeat

theseproceduresfor eachleaf nodeof the tree until: (1) the intersectionof minimal candidates

is not empty,i.e., the correspondingfailuresourcesare definitelyfaulty, or (2) no test provides

further information. Theformercorrespondsto the casewhenthecardinalityof oneor moreF_. in

the ambiguity group is one.

After repairing/replacing the components isolated by Sure strategies, we apply additional tests,

if necessary, to isolate the remaining failure sources. We explore three different approaches for the

application of additional tests: (1) start from the root OR node of the diagnostic tree; (2) start from

the first failed test in the path leading to the isolation of previous faults; (3) update the multiple

fault suspect set at the leaf node by integrating previous test results using the fourth property of

the compact set notation, removing repaired/replaced failure sources from the ambiguity group at

the leaf node, and invoking Sure strategies for the updated ambiguity group. Sure 1-3 algorithms

correspond to the first, second and third approaches for applying additional tests, respectively.

These are presented in detail in the next subsection.

The Surel diagnostic strategy is simple and the resulting diagnostic tree is very similar to the

single fault diagnostic tree. However, the expected testing cost using this strategy is usually high.

The expected testing cost using Sure2 diagnostic strategy is less than the first one, but the next

test to be performed after repairing/replacing each failure source will be different. Furthermore,

the diagnostic tree will change to a digraph (directed graph). The expected testing cost for the

third approach is the smallest, but the size of the diagnostic tree will be considerably larger than

the others. This is because the number of leaves of the diagnostic tree is the same'as the number of

distinguishable multiple-fault failure signatures. For example, in the worst case, i.e., when the test
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matrix B is diagonal, the number of leaves is 2 m. This is because there are 2m possible multiple-

fault failure signatures. But, the number of leaf nodes in Surel and Sure2 diagnostic strategies in

this case are the same as in a single-fault strategy, i.e., m + 1.

One of the interesting features of Sure strategies is that the starting point for all three algorithms

is the same tree as in a single fault strategy for the system under consideration. This is because the

minima] candidate set for 2 S is {so, sl, ..., sin}. Therefore, these strategies isolate a single fault with

the smallest average cost, while not making an error when multiple faults are present. Furthermore,

in the case of very large systems, instead of generating all minimal candidates, we can generate

minimal candidates of size less than a certain threshold, L, and diagnose multiple faults up to that

size.

Example 1.c: Figure 4, without (with) the dashed lines, shows the multiple fault strat-

egy for the system in Example 1.a, based on Surel(Sure2) algorithm, where Ai denotes the

ambiguity group corresponding to the OR node i, and AI= O(1;{SO,_l,S2,_¢3, s4,SS} ;0); A2=

0(1; {so, s2,s3}; {s,,s4,s5}); A3 = @(1;{sl,s4,ss};O); A4= O(1;{so};{Sl,_2,s3, s4,s5})_ As = @(1;

{_,_3); {_,,_4,_}); A6 = 0(1; {_,,_4};{_,_3,_5}); A7 = 0(2; {_,,_;_%},{s_,_3,_);¢); As =

@(1; {s2}; {sl,s3, s4, ss)); A9 --= @(1; {s3}; {sl,s4,s5)); A,o = @(1; {s,}; {$2,$3, $4,s5}); All

= o(1; {_,}; {_,_3,_}); A_= O(2;{_,,_s},{_,_};{_,_}); A,3 = 0(3; (_,,_,*s}, {_,_,_s},

{Sl,S3); 0); A14 = 0(2; {s3}, {sl,s4}; {s2,ss}); Als = 0(3; {sl,s4,ss}, {sl,s3}, {s2, ss}; 0); A16

= 0(2; {sl}, {s2}; {s3,s4, ss)); A,z = 0(4; {s,,s3}, {s2,Ss}, {s3,s4,ss), {s,,s4,Ss};{_)

Note that the shaded parts of the tree are the same as those in the single fault diagnostic tree

of Figure 1. The average testing cost for the optimal multiple fault strategy is J = 2.411, and

the average testing cost for the first (Surel) and second (Sure2) approaches using the diagnostic

strategy of Figure 4 are J = 2.715 and J = 2.616, respectively.

Example 1.d: The Sure3 strategy for Example 1.a is shown in Figure 5, where Als = A2o =
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ACTION NODE

Figure 4: Surel and Sure2 Test Strategies for Example I.a

A24 = G(1; {so}; {s_, s2, s3, s4, ss}); A,9 = @(1;{s2};{a,,Sa, S4,ss}); A23 = @(1;{s4}; {s2,Sa, Ss});

A21 = A22 = A2s = @(1;{s,};{s2,s3, s4,ss});

Note that the shaded and dashed parts of the tree in Figure 5 are the same as those in Figure

4. For this test strategy, the average test cost J = 2.535. In this example, we considered a block

replacement strategy when no test gives further information, for example, see aanbiguity groups

A12 and A17.

We applied Sure algorithms to several real-world systems. Table 5 shows the times taken to

construct diagnostic strategies based on Surel and Sure2 diagnostic strategies for several real-world

systems. Table 6 shows the number of nodes in the Surel and Sure2 diagnostic strategies for these

real-world systems.

We applied Sure3 diagnostic algorithm to several real-world systems. Table 7. shows the times

taken to construct a diagnostic strategy based on Sure3 strategy for several real-world systems.
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System

Anticollision system

Amplifier-filter

1553 Bus

Goodrich (EDIF)

Phase Decoder (EDIF)

m, n)

(43, 53)

(80, 25)

(176,53)

(898, 250)

(1644, 2147)

Time (sec)

# Fault Limits

1 2

0.27 1.71

0.18 0.23

0.27 0.50

0.88 0.88

41.59 461.24

3 All

5.98 26.28

0.26 0.27

0.82 1.05

0.88 0.88

1194.16 (>2400)

Table 5: Solution Times in Seconds Based on Surel and Sure2 Strategies for Various Real-world

Systems on a SPARC-10

System

Anticollision system

Amplifier-filter

1553 Bus

Goodrich (EDIF)

Phase Decoder (EDIF)

m, R)

(43, 53)

(80, 25)

(176,53)

(898, 250)

(1644, 2147)

# Nodes

# Fault Limits

1 2 3 All

79 521 1889 7257

55 75 83 89

67 123 225 289

37 37 37 37

993 8843 21347 out of memory(> 79000)

Table 6: Number of Nodes in Surel and Sure2 Strategies for Various Real-world Systems
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Figure 5:Sure3 Test Strategy for Example 1.a

Table 8 shows the number of nodes in the Sure3 diagnostic strategy of these real-world systems.

The computational results indicate that the size of the diagnostic strategy based on Sure3 is

considerably larger than the others, and consequently, Sure3 diagnostic strategy cannot be applied

to large-scale systems.

6.2.1 Sure Algorithms

Sure algorithms are recursive functions, and must be invoked as Sure( OR node, Am, surei), where

• OR node is the current OR, node,

• Am = O(L; F1, F2, ..., Ft; G) is the multiple fault ambiguity group at the OR node,

• surei denotes the Surel-Sure3 diagnostic strategies.

Global variables:
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System

Anticollision system

Amplifier-filter

1553 Bus

Goodrich (EDIF)

Phase Decoder (EDIF)

(m_ 12)

(43, 53)

(80, 25)

(176,53)

(898,250)

(1644, 2147)

1

0.27

0.18

0.27

0.88

41.59

Time (see)

# Fault Limits

2 3 All

6.09 89.74 >7200

2.16 6.05 803.27

3.76 16.72 >5000

4.92 7.72 19.09

> 3600 -- --

Table 7: Solution Times in Seconds Based on Sure3 Strategy for V_rious ReM-world Systems

System

Anticollision system

Amplifier-filter

1553 Bus

Goodrich (EDIF)

Phase Decoder (EDIF)

(m_ 13.)

(43, 53)

(80, _5)

(176,53)

(898, 2so)

(1644, 2147)

1

79

# Nodes

55

67

37

993

#Fault Limits

2 3

1195 13275

601 1619

773 3433

343 553

>I00000

All

>100000

24204

>100000

1463

Table 8: Number of Nodes in Sure3 Strategy for Various Real-world Systems
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• the set of failure sources S = {sl, ..., sin},

• the a prior probability vector P = [p(sl), ...,p(sm)],

• the set of available tests T = (tl,t2, ...,tn},

• the set of test costs C = (o,c2,...,cn},

• the binary test matrix B =- [bij].

Initialization:

• OR node=root OR node,

• Am = 6)(1; F 1 ---- S; e = O).

Algorithm: Sure( OR node, Am, surei)

step 1: Generate the minimal (or irreducible) set of the multiple fault

ambiguity group Am, As = [(Am).

step 2:

step 3:

Evaluate the conditional probability of faults in As using P, Ps-

Generate the binary test matrix Ds using B for the faults in As;

failure signature of each fault in As is the union of failure

signatures of individual failures.

step 4: IF no test gives any information, THEN

step 4.1: Action: repair/replace all faults in [.Jl<_i<_LFi -- {80}.

step 4.2: G +- GU {repaired/replaced failure sources}.

step 4.3: 5'S _ S - G.

step 4.4: IF $5" = {_¢0}, THEN

- Action: stop.

- label the OR node SOLVED, and RETURN.
END

step 4.5: IF surei is Surel, THEN

- Action: apply more tests from root OR node.

- label the OR node SOLVED, and RETURN.

ELSE IF surei is Sure2, THEN

- Action: apply more tests from the first failed

test on the path from root OR node to the
OR node.

- label the OR node SOLVED, and RETURN.

ELSE IF surei is Sure3, THEN

- A.,= 0(1; = SS; C).
- Invoke Sure( OR node, Am, surei).

END

END

step 5: Expand the diagnostic tree from the OR node by invoking

TEAMS-S (As, Ps, T, C, Ds).
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step 6: Propagatethe multiplefault ambiguitygroupAm of

the OR node along the tree.

step 7: DO for each UNSOLVED leaf node,

step 7.1: IF the multiple fault ambiguity group of the leaf

node has guaranteed failures identified (i.e., Fi (s)

with one member),
THEN

step 7.1.1: IF any __ = {So}, THEN

- Action: stop.
- label the OR node SOLVED,

and CONTINUE.

END

step 7.1.2: Action: repair/replace the faults

in Fi(s) with one member.

step 7.1.3: G _ GU {repaired failure sources}.

step 7.1.4: SS _ S - G.

step 7.1.5: IF SS = {so}, THEN

- Action: stop.

- label the OR node SOLVED,

and CONTINUE.

- END

step 7.1.6: IF surei is Sure1, THEN

- Action: apply more tests from
root OR node.

- label the OR node SOLVED,

and CONTINUE.

ELSE IF surei is Sure2, THEN

- Action: apply more tests from the

first failed test on the path from the
root OR node to the OR node.

- label the OR node SOLVED,
and CONTINUE.

ELSE IF surei is Sure3, THEN

- Am= 0(1; F1 = SS; G).

- Invoke Sure( leaf Ott node, Am, surei).
END

ELSE

step 7.I.7: Am +- Multiplefaultambiguitygroups
of the leafnode.

step 7.1.8: InvokeSurei( leafOR, node, Am, sure/).

END

END
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6.3 Computational Issues

In order to make the algorithm efficient, we find all the failure sources with the same failure

signature in the test matrix. That is, we generate the set N={N1, N2,...,Nz} such that Nt C S

for l = 1,...,fl and Vsi E Nl have the same failure signatures in the binary test matrix. Thus,

instead of invoking Sure strategies for the set S, we can invoke them for the set N. In this case, the

probability that none of si E Nt is faulty, i.e., 15(Nz), and only one of si E Art is faulty, i.e., p(Nt):

can be evaluated as follows:

_(w,) = ]-I (1- p(s_))
s, EN_

;(N,) = _ v(_,) 1-I (1 - p(sj))
siENt saENt&i¢j

(3)

Thus, using p(Nt) and i5(Nt), the conditional probabilities of minimal candidates can be eval-

uated. For example, the conditional probabilities associated with the set N at the starting point,

i.e., based on a single fault assumption, can be evaluated as follows:

po = (4)

PNt = for l = 1,...,/3

In the case, when INH- I for l = 1, ...,fl and fl = m, (4) reduces to (1).

7 Summary

The computational and storage complexity of an optimal multiple fault strategy are super-

exponential in the number of failure sources, m. We presented several near-optimal algorithms

that provide a trade-off between optimality and computational complexity.- Firstly, we extended

the single-fault strategy of our previous work [7, 8, 11] to diagnose multiple faults by successively

isolating the potential single-fault candidates, then double-fault candidates, and so on. This is one
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of thesimplestmultiplefault strategiesthat onecanuse.In thisapproach,thestoragecomplexity

at eachOR nodeof the AND/OR graphis the sameasthat in a singlefault strategy. However,

usingthis approach,the probability of falsealarmerroror RTOKis very high.

Wethenextendedthe singlefault sequentialtestingstrategiesto a classof Surestrategies.The

basicideaof thesestrategiesis to find oneor moredefinitelyfailedcomponents,while not making

anerrorwhenotherco-existingfaultsarepresent.Weexploredthreedifferentapproachesfor the

applicationof additionaltests, resultingin Sure1-3strategies.

Someof the advantagesof usingSurestrategiesare: (1) the inherentcombinatorialexplosion

that occursin generatinganoptimal multiple fault strategyis reducedsubstantiaUy.(2) the first

iterationof theSurestrategiesresultsin thesametreeasin thesinglefault strategy,and therefore,

thesestrategiesisolateasinglefault with thesmal[estaveragecost,whilenotmakinganerrorwhen

multiple faults arepresent.Computationalcomplexityof this approachis strictly relatedto the

structureof thesystem,i.e., the structureof test matrix B.

In order to overcome the problems associated with the size of the complete diagnostic strategy,

the test strategy should be generated "on-line". That is, iustead of generating the entire diagnostic

tree, the interactive strategy only suggests the next test to be applied given the outcomes of

previously applied tests. In addition, we assumed that the failure signature of each multiple failure

is the union of the failure signatures of individual failures. However, this assumption does not hold

for fault-tolerant (redundant) systems. In order to solve this problem, a binary test matrix based

on minimal candidates, i.e., minimum number of failures with a failure signature different from the

union of failure signatures of individual failures, should be generated. We expect to investigate

these challenging issues in our future efforts [17, 18].
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Appendix A: Conditional Probabilities of Failure Sources

Let us assume that hypothesis S I C S = {_1, ..-, 8m} denotes a set of failure sources such that

{si E SI} are faulty and {sj C SI} are fault-free. Thus, SI can be represented as an m-dimensional

hypothesis vector x = [Zl,...,Xm] t where xi = 1 if si E St ; otherwise, xi = O. From the failure

independence assumption, the probability of hypothesis vector x_is;

172

p(_-)= II p(s,)_'(1 - p(_;))1-x,

m p(_)
= _1(1.= :-_si) )_:'(1-v(si))

m p(si) ,,
= p(x= O) I_(1 _ p(si))

i=1

(s)

where _0is a zero vector of dimension m, and p(z__= 0) is the probability of fault-free state of the

system. Using Bayes' rule, the conditional probability of failure hypothesis x based on a single-fault

assumption, i.e., P = {po,pl, ...,pro}, is as follows:

p(z_lsr) =

O-_-'i))
I+_L 1 _("_-(l-p(_k))

1
,)_+_22"=1,__ma_

(1-p(,D)

0 otherwise

ifxi= 1 andzj=OVj¢i

if x=O (6)

Thus, the conditional probability of failure source sl given the single fault assumption, pi, is

the conditional probability of hypothesis vector x__= e_, where e_i is the i-th unit vector, i.e., xi = 1

and xj = 0 V j yt i, and Po = p(x_ = OISF ).

Note that a priori probability of failure source si, i.e., p(si), can be derived from the distribution

function $}(t) as p(si) = $}(to), where F/(t) is the probability that failure source si has failed at

or before time t, and to is the UPTIME. In the following, we consider two special cases: (1)

Exponential distribution, and (2) Weibull distribution.
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A.I: Exponential Distribution

In this case, T_(t) = (1 - e -_'t) for i = 1, ..., m, where Ai = 1/MTTFi is the failure rate and

MTTFi is the mean time between failures. Thus,

v#_)=(1-e -_,'o) rot i=l,...,m (r)
m

v(_o)= l-I(1 - v(_,))= e-_'°
i=I

where AT = _=i Ai. The conditional probability of each failure source si, using equation (6), is as

follows:

e "_'t° -- i e A't° -- I
for i 1,...,mpi

1 + _'_=l(e)" t° - 1) - 1 - m + _=1 e)"_° (8)

1
P0 =

1 - m + _-._=1 e,bto

if Aito << 1 for i = 1, ...,m, then e_t° ,_ i + Aito. Thus, equation (8) reduces to:

Aito Ai _Pi'_ I+ATlO -- _+AT --_ (1-po) for i= 1,...,m
_o

1__
1 to

po
l + ATtO -- _ + AT

A.2: Weibull Distribution

In this case, F/(t) = (1 - e -(_''P) where _ is the characteristic life and a is a shape parameter

that changes the shape of the distribution compared with the exponential. Thus,

p(*i) = 1- e -(x'O° for i = 1,...,m (9)

= 1I(1 - v(,_))= _-(_''°)°
i-----1
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where )_w = (_n=l),_)_. Therefore, the conditional probability of each failure source si is as

follows:

e (_a°)" - 1 e (:_a°)° - 1

Pl = 1 + _jm=l(e()_ito)" - 1) = 1 - m + _,jm=l e(_,to) _ for i = 1, ...,m (10)
1

P0 =
1 - m + _'_=1 e(_it°)_

If Aito << 1 for i = 1, ..., m, then e(_'to) ° _ 1 + (Aito)% Thus, equation (10) reduces to:
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Abstract - In this paper, we consider the problem of

constructing optima/and near-optimal multiple fault

diagnosis (MFD) in bipartite systems with unreliable

(imperfect.) tests. It is known that exact computation

of conditional probabilities for multiple Fault diagnosis
is NP-hard. The novel feature of our diagnostic al-

gorithms is the use of Lagrangian relaxation and sub-

gradient optimization methods to provide: (I) near
optimal solutions For the MFD problem, and (2) upper

bounds for an optimal branch-and-bound algorithm.

The proposed method is illustrated using several ex-

amples. Computational results indicate that: (I) our

algorithm has superior computational performance to
the existing algorithms (approximately three orders of

magnitude improvement over the algorithm in [3]), (2)
the near optimal algorithm generates the most likely

candidates with a very high accuracy, and (3) our al-

gorithm can t_nd the most likely candidates in systems
with as many as 1000 faults.

I. Introduction

With the increased recognition of importance of de-

sign for testability, there is an increasing trend towards
the use of smart sensors for on-board system health man-

agement. The results of on-board tests are available to

the ground test systems and operators as a block of symp-

toms. Due to improper set up, operator error, electro-

magnetic interference, environmental conditions, or alias-

"Research supported by NASA-Ames Research Center and the
Department of Economic Development of the State of Connecticut.

ing inherent in the signature analysis of on-board tests,
the nature of tests may be unreliable (imperfect). Imper-
fect tests introduce an additional element of uncertainty

into the diagnostic process: the pass outcome of a test

does not guarantee the integrity of components under

test (because the test may have missed a fault), or a
failed test outcome does not mean that one or more of

the implicated components are faulty (because the test
outcome may have been a false alarm). Consequently,

the diagnostic procedures must hedge against this uncer-

tainty in test outcomes.

In this paper, we consider the problem of construct-

ing optimal and near-optimal multiple fault diagnosis in
bipartite digraphs with unreliable tests. This problem

is a central and long-standing concern in system fault

diagnosis, and medical decision making [10]. When the

false alarm probabilities of all tests axe zero, the problem

simplifies to the parsimonious covering theory (or proba-

bilistic causal model) discussed in [16]. Peng and Reggia

[15] proposed a competition based connectionist method
to subdue the problem of combinatorial explosion in com-

puting the posterior probabilities of all possible combi-
nations of failure sources in probabilistic causal models.

However, this method does not guarantee a global opti-

mum and suffers from large computation times even for

problems with small numbers of failure sources, m=26.

Genetic algorithms are offered as an alternative to the

connectionist methods [3, 9]. Genetic algorithms are

based on an analogy with Darwin's biological evolution-

ary theory in which a group of solutions evolves via natu-
ral selection. It emulates the rules of biological evolution-



aryprocess,such as reproduction, crossover, mutation,

and natural selection, etc. At each iteration, a popula-

tion of individuals is established, where each individual
corresponds to a point in the search space. The objective
function is evaluated for each individual to rate its fit-

ness. Then, a next generation is formed based on the sur-

vival of the fittest. Therefore, the evolution of individuals

from generation to generation tends to result in fitter in-

dividuals (i.e., solutions) in the search space. These algo-

rithms converge extremely slowly, and have been applied

to small problems with m=20 failure sources (causes, dis-

orders) and n=20 tests (manifestations, symptoms).

Wu [20] proposed a decomposition method based on

common and disjoint causal (failure source) relationships

among the given symptoms (tests). This method decom-

poses the original problem into smaller and independent
subproblems, and therefore, increases the performance

and efficiency of multiple fault diagnosis. However, this

approach is not applicable for systems with large num-

bers of nondecomposable causes and symptoms.

In this paper, we present a novel approach, using

Lagrangian relaxation, to solve multiple fault diagnosis
problem. By defining new variables and constraints, the

multiple fault diagnosis (MFD) problem reduces to a
combinatorial optimization problem with a set of equal-

ity constraints. The constraints are relaxed via Lagrange

multipliers. The relaxation procedure generates an upper

bound for the objective function. The procedure of min-

imizing the upper bound via a subgradient optimization

produces a sequence of solutions that are modified, in a

computationally effective way, to produce a sequence of
feasible solutions to the MFD problem. If the objective

function value for the best feasible solution and the upper

bound are the same, the feasible solution is the optimal

solution. Otherwise, the difference between the upper

bound and the feasible solution, termed the approximate

duality gap, provides a measure of suboptimality of the

MFD solution. Alternatively, the optimal solution can

be found via a tree search (or branch-and-bound) proce-

dure. The computational complexity of the near-optimal

algorithm is a linear function of the number of failure
sources, m and the number of failed tests, IT! [.

Next, we present an approach to determine a ranked

set of multiple fault diagnosis solutions (i.e., the best,

second best, ..., L-th best diagnosis). In this approach,

following Murty [12] and Cox et. al. [5], we: (1) parti-
tion the MFD problem, based on its best solution, into

disjoint subproblems; (2) solve the subproblems and sort
them by the values of their solutions, and (3) select the

subsequent best solutions. One of the advantages of this

approach, compared to the one in [14], is that since the

subproblems are disjoint, the optimal solution of each

subproblem is different from the others. Finally, we show

that the MFD algorithm can be extended to solve mul-

tiple fault diagnosis problems with repetitive application
of tests.

The paper is organized as follows. In Section II, we
formulate the multiple fault diagnosis problem in a bi-

partite system. In Section III, we present a near-optimal

algorithm based on Lagrangian relaxation and subgra-
dient optimization method to diagnose multiple faults,

and generate an upper bound for the likelihood of mul-

tiple fault candidates. The upper bound can be used in

an optimal branch-and-bound algorithm. The multiple

fault algorithms for a set of L-ranked multiple fault di-

agnoses are presented in Section IV. In Section V, we

consider the multiple fault diagnosis problem with repet-
itive tests. Several examples are presented in Section VI.

Finally, in Section VII, we summarize the results and
discuss future research issues.

II. Problem Formulation

The MFD problem in bipartite systems with imper-

fect tests consists of a bipartite digraph DG = {S, T, E},
where

• S = {sl,..., Sin} is a finite set of independent failure

sources (failure nodes) associated with the system;

T = {tt,t2,...,t,_} is a finite set of n available bi-

nary outcome tests (test node), where the integrity

of system failure sources/components/modules can
be ascertained;

E ={eij } is the set of digraph edges (links) specify-

ing tile functional information flow between the set
of failure sources and the set of tests in the system.

The input requirements of the failure nodes and edges

of the digraph are as follows:

° Failure node: A priori probability vector of failure

nodes P = [p(sl), ...,P(Sm)], where p(si) > 0 is the
a priori probability of failure source si.

. Link (edge): A set of probability pairs Pij =

(Pdl.i, Pfq) representing the detection-false-alarm
probabilities of the set of tests, where Pdij and P.fij

are the detection and false alarm probabilities of test

tj and failure source si, respectively (see Figure 1).
Figure 2 shows a bipartite digraph model.

The problem is to find the most likely candidates X C_
,.q that are consistent with the results of applied tests.

This is formulated as:

max Prob(XlTp,T.t) (1)
x_s

2



si Pdij tj
fail • =a fail

pass _ I -- P fij -_ pass

Figure 1: Detection-False-Alarm Probability of Failure

Source si and Test tj

Failure Sources P, 1 Tests

Sl _ Q

si tj

Prnn

Figure 2: Illustration of the Bipartite Digraph Model

where Tp C T and 7'I C T denote the set of passed and
failed tests, respectively. Using Bayes' rule and elimi-

nating the constant factor Prob(Tp, Tf), we obtain the
following equivalent maximization problem:

max Prob(Tf, TplX)Prob(X ) (2)
XCS

For notational simplicity, we define binary vector z__

of size m, where zi = 1 if failure source si E X; xi = 0,

otherwise. Note that, given a multiple fault candidate X,
the tests are independent. Thus, the above probabilities
can be evaluated as follows:

Prob(TplX) = II Prob(O(t_) -- pig) (3)
theT_

Pr°b(TIlX) = H Prob(O(t./)=fiX) (4)
,,eT1

Prob(O(tj) = plX)

ITt

= H( 1 _ pdq)_,(1 _ pfq)(t-z,)
i=l

m m 1- Pdq _i= [H(1- Pfq)l[H ( -ff_q) ]
i=1 i=l

(5)

Prob(O(tj) = fiX) = 1 - Prob(O(tj) = p[X) (6)

ITI

Prob(X) = Hp(si)_'(1 - p(sl)) (t-_')
i=1

m m p_(s,)
= [1-'[(1 - P(Sl))l[H( 1 - p(si) (7)

i=1 i=1

where O(tj) E {p(=pass), f(=fail)} is the outcome of

test ij, and Pdij = 0 and Pfij = 0 for eij _ E.

III. Problem Solution

One approach for generating the optimal multiple fault

diagnosis is to consider all possible combinations of fail-
ure sources, i.e., the power set 2 s, and select the mul-

tiple fault candidate with the highest likelihood func-

tion in (1). However, the computational complexity of

this approach is exponential in the number of failure
sources m. In the following, we present an algorithm,

based on Lagrangian relaxation and subgradient opti-
mization method, to generate a near-optimM solution for

this problem.
By substituting (3) and (4) into (2) and taking the

natural logarithm of the resulting objective function, the

problem is equivalent to:

max EtiET! ln(Prob(O(/j) = fiX:)) +xcs

_-,t,eT, ln(Prob(O(tk) = p[X)) +

ln(Prob(X)) (8)

By substituting (5), (6) and (7) into (8), the problem
reduces to:

lnaX EtiETI ln(1 ,_ Pdi x m- +XC_S _

in( + In(Pf,D} +IE,=, .I,,

Ei_1{zl In(pi) + In(1 - p(s/))} (9)

where Pi = nfsi)(l_p(,,)), P"'-fij = 1- Pfij and Pd'-'_j =

1- Pdq for i = 1,...,m and j = 1,...,m. By

(i) eliminating constant factors )-'_=1 In(1- p(si)) and

E,,eT, Er=,ln(P-Tfik), and (ii) defining new variables
m Pdi" x' rn

YJ = []-Ii=,(_) '][I-Ii=:(Pfij)] for tje T 1, and tak-

ing the natural logarithm of it, the problem reduces to

the following optimization problem:

max J(z__,y_) = EtjeT, ln(1 - yj) +

___,iml " _'j.zi{__n,er, In(_) + ln(pi)} (10)



msubject to: ln(vj) = E xi In( Pd_i )
i=, _ + i=t ln(PT,j) (11)

O<_yj < 1 fort/ ET 1 (12)

xi=0orl for i=l,...,m (13)

where y = [Yl,'",YlTII], and [.I denotes set cardi-
nality. For simplicity, we define new variables h i =

rrl

Ei=I ln(Pfij) for tj e T 1. Note that, if we define
-- Pdi "

Pco=(_ ) for i = 1, ..., m and j = 1, ..., n, then Pcij,

hj and Pi are sufficient statistics for solving this problem.
The following lemmas present two important properties

of the MFD problem.

Lemma 1: IfPfik=O and Pd_k = 1 for any passed test

tk, then the optimal solution does not contain failure

source si, i.e., zi=O (or equivalently si _ X).

Proof: If si E X (or x_ = 1), then the second part

of the objective function in (10), and, consequently, the

overall objective function will be unbounded, i.e., it
would be -c_.

Using Lemma 1, the size of the MFD problem can

be reduced by removing all failure sources {silPfik=O,

Pdik = 1 and tk E Tp} from the problem.
Lemma 2: If the false alarm probabilities of a failed

test-tj are zero, i.e., Pfo=O for i = 1,...,m, then the
optimal solution contains at least one xi=l, such that

Pdij > 0. That is, the optimal solution must cover the
failed tests.

Proof: We prove this lemma by contradiction. Pfo=O

for i = 1,...,m results in hi=0. If for all Pd 0 > O,

xi=0, then we have ln(yj)=O and, hence, yj = 1. Thus,

ln(1 -yj), the first part of the objective function in (10),
and, consequently, the overall objective function will be
unbounded.

Using Lemma 2, we define the following constraints:

Ax > e for tj E T/ and h/ = 0 (14)

where A = {ao} is a binary matrix of size IH[ ×m;

H-- {tj e Tllh I = 0 for j- l,...,n};each rowlof

matrix A corresponds to a failed test f1 with h i = 0;

au=l, if Pdij > 0 for i = 1, ..., m; otherwise, ati=O, and
e_.is a vector of l's.

Adding the set of constraints (14) to the problem in

(10)-(13) results in a smaller search space and tighter

upper and lower bounds (best feasible solution found),

and, therefore, a better estimate of the optimal solution.

bemma _: When all tests are perfect, that is, Pd 0 -- 1

and Pfij = 0 for i = 1,...,m, j -- 1,...,n and eij E E,
using Lemmas 1 and 2, the problem reduces to the fol-

lowing set-covering problem: maxc_ Y_-,_s- pizi subject

to (13) and (14), where S- is the reduced set of failure
sources, i:e., S after eliminating the failure sources satis-

fying Lemma 1.

Proof: This lemma can easily be proved by Lelnmas 1

and 2. Pdij = 1 and PrO = 0 for the failed tests results

in hj = yj = 0. Therefore, the first part as well as the
second part (using Lemma i) of the objective function in

(10) can be eliminated, and the problem reduces to the

traditional set covering problem. The set covering prob-
lem can be solved optimally by any optimal set-covering

algorithm [2, 7], or near-optimally via a Lagrangian re-

laxation and subgradient optimization method [1].
By relaxing the constraints in (11) via Lagrange mul-

tipliers { Aj }, we obtain the Lagrangian function:

max Q(A__,z_,y_) = _ {In(1 - yj)+ Aj In(y/)} +
x_,[ t)ETI

Pdik ,
_--_zi{ _ ln(_) +ln(pi)-
i=l tkET_

(15)
tjET l t)ET/

t)ET I i=1 t jeT 1

subject to (12), (13) and (14), where fj()_j, yj) and ci(A__)

denote the first and second equations in the brackets in

(15), respectively. The important point here is that the
maximization of Lagrangian function in (15) with respect

to x_ and y can be carried out independently for each fixed

_. Maximization of Q(_, x__,y) with respect to y_is equiv-
alent to:

max fj(_j,yj) = ln(l - yj) + _j ln(y/) for tj E T! (16)
0_<vi<l

The maximum of this function is V_ (Aj) = _ u(Aj) At
l+Aj

the value of y_ (Aj), the first and second derivatives of the
function are zero and negative, respectively, indicating

that fj(Aj, Yi) is a maximum (where u(.) is the unit step

function).
The maximization of the Lagrangian function

Q(A, x_,y.y.)with respect to _ is equivalent to:

max W(__, x_) = _]_'=tc,(A__)zi (17)
x

subject to (13) and (14), which is a traditional set-
covering problem. This problem has been extensively

studied by the operations research and management sci-

ence communities [2, 7]. There exist a number of opti-

mal algorithms, based on feasible solution exclusion con-
straints, Gomory f-cuts and tree-search procedures for

this problem [2, 7]. Let z_'(A_) be the optimal solution of

this set-covering problem. Thus, Q(_ z_'(A_), y'(A_)) is
an upper bound for the optimal objective value in (10).

This result is summarized in the following Lemma:



Lemma 4: Let J* be the optimal value of the objective

function in (10). Then Q(A_, x_*(A__),y*(A__)) >_ d* for any
h.

Proof: Let z_° and _V° be the optimal solution of the

problem in (10). Thus, o) <_
This is because, x_*(A__)and y* (A_)are optimal with respect
to the relaxed problem in (15). Since the optimal solu-

tions x_° and _V° satisfy (11), we have Q(__,x__°,y_°) = d*,
and therefore, J* _< Q(A_,x_*(A_),y*(A_)).

After evaluating the optimum values x_*(A__)and y* (A_)
for a fixed __, the problem reduces to one of minimizing

the upper bound Q(A__)= Q(A__,x*(A__),y* (A_)). Since Q(A_) is
a piecewise function of A_, this problem cannot be solved

using differentiable optimization algorithms. As an al-

ternative, we use a subgradient optimization algorithm

[13] to produce a sequence of upper bounds for Q(__).

If we denote by Q*, the optimal Lagrangian func-

tion value, i.e., Q*= Q(A__*)=min&Q(__), the difference
(Q* - d*) is termed the exact duality gap. Since the

problem in (10)-(14) is NP-hard [4], we may never know
the global optimal solution J*. Instead, we construct

several feasible solutions to this problem from the La-

grangian function solution, and select the best feasible

solution from the set. Let J(A_*,x_f,yl) be the best fea-

sible value, then we have, d(__*, x_f, yl) < d* _< Q*. A
nice feature of the Lagrangian relaxation method is that

the approximate duality gap:

Q*- J(h',d,v_ f) = (Q" - J')+(J* - >_o
(18)

provides an overestimate (by the value of the exact du-

ality gap, (Q* - d*) ) of the error between the global

optimal solution and the best feasible solution found.

Thus, in some cases, even though the best optimal so-

lution found is the optimum solution of the problem, the

approximate duality gap may be nonzero, see Example 1

in Section VI. Based on extensive computational experi-

ments, the relative approximate duality gap, 6J, defined
by:

Q* - J(A_*, x_j , y J)

is small for the multiple fault diagnosis algorithms (typi-

cally less than 5%). The pseudocode of the multiple fault
diagnosis algorithm is presented in the next section.

A. Multiple Fault Diagnosis Algorithm

Let (z_l, __ ), Qmin, Qub and Qtb be the best feasible
solution found, minimum upper bound, current upper

bound and maximum lower bound (function value based

on the best feasible solution found, i.e., J(x1,_)) for

Q(A, x, _y), respectively. The pseudocode of multiple fault
diagnosis algorithm is shown in Figure 3.

Initialization: Initialize: (1) Ai = 1 for j = 1, ..., IT/],
(2) Qmin = co, (3) QIb = --co, and (4) set iteration count

t = 1. The reason for initializing 2 i = 1 is that it results

in y_ = 0.5.

Step h Find optimum values x_*(_) by solving the

set-covering problem in (17).

Step 2: Find optimum values y*(__)

where y_ (hi) = l+xiu(J_j) for j = 1, ..., [TI].

Step 3: Evaluate y(x'(A)) using equation (11).

Step 4: Update x_T,-yl FQmin, Qub and Qlb as follows:

* If J(x*(A_),y(x__*(A))) > Q,b, then

d : x_'(h),vj =
and Q,, =

. = Q(h,x_*(h),y_*(h)),
• Qmi, = min(Qmin,Qub).

Step 5: Calculate the subgradient
X" rn

: _ l+_,j / -- n[p.f_ i ) + hi}

for j = 1, ..., [Tf[ .
V',ITsl 2

Step 6: Stop if r_..j=l d_ : 0 since in this case we
cannot define a suitable step size.

(oQ._-Q,_)
Step 7: Define astep size fl by/_ = -f ,X__,Tjld_ )

_'/--Jj= I •

where initially f = 2. If Qmi. has not
decreased in the last 10 iterations of the

subgradient procedure with the current value

of f, then f is halved. This approach to

deciding the value of f is based on the

procedure of Fisher [6]. The parameter a with

typical value 1 _< a _< 1.1 is to ensure that

does not become too small as the gap between

Q_b and Qtb decreases [1].
Step 8: Stop if f_< 0.05 or t >_ 100 (or any other

suitable stopping criteria).

Step 9: Update the Lagrange multipliers Ai as follows:
Ai = max(0, Aj +/_di) for ti • 7"I, t ,-- t + 1,

and go to step 1.

Figure 3: Pseudocode of MFD Algorithm

B. Improving the Computational Complexity

The computational complexity of MFD algorithm for all

steps except the first step is O(m[T! [). It is well known
that the set-covering problem is NP-hard [11], and there-

fore, the first step of the multiple fault diagnosis algo-

rithm limits the size of the problem that we can solve.
One of the important points here is that a near-optimal

solution as well as an upper boufid solution for the set-

covering problem can be found via Lagrangian relax-



ationmethod[1]in a mannersimilarto theMFD al-

gorithm. Let z n(__) and r__u(__)denote the near-optimal

(best feasible solution found) and upper bound solution

for the set-covering problem, respectively. Note that
any feasible solution for the set-covering problem is a

feasible solution for the multiple fault diagnosis prob-

lem. However, for a given __, the best feasible solu- IV.
tion for set-covering may not be the best feasible solu-

tion for the multiple fault diagnosis problem. Therefore,

we have: J(z_'(_),y_(z_"(A_))) < J* < Q(__,z_'(A_),_'(A_))

_< Q(h, x u(A),y*(h)). Thus, using x_"(h) and z_"(A), we
can generate a sequence of upper and lower bounds to

the multiple fault diagnosis problem. In this case, the

multiple fault diagnosis algorithm should be modified as

follows: replace the optimal solution x_*(__) in the algo-

rithm with the near-optimal solution x__n(__), except in

Qub where x__*(A) should be replaced by the upper bound

solution _x*'(__). By this modification, the computational

complexity of this approach reduces to O(m[T I]), and

therefore, can be applied to large-scale systems. Note

that, because of storage complexity of storing Pdij and

Pfg for all failure sources and tests, the available mem-

ory of a given computer may limit the largest size of the

problem that we can solve.

In large-scale systems, it is practical to assume that
the detection and false alarm probabilities of each test

lj is the same for all failure sources connected to it, i.e.,

Pdij=Pdj and Pfij=Pfj, if eij E E, otherwise, Pdij=O

and Pfij=O. In this case, we define a binary reachability

matrix R = {rij} such that rij = 1 if eli E E, otherwise,

rij = 0. The detection and false alarm probabilities of
each test tj for each failure source si can be evaluated

as follows: Pdij = rijPdj and Pflj = rijPfj. Note A.

that, in this case, the binary matrix R = rij can be
stored in a bit-compact format, and consequently, the

storage complexity of the problem reduces by a factor

of approximately 2K, where K is the number of bits for

representing a floating variable in a given computer. For

example, the storage complexity of the MFD problem

for a system with 10,000 failure sources and tests when

K=32 bits (or equivalently 4 bytes) are 800 Mbytes for

storing Pdij and Pfij, and 12.5 Mbytes for storing the

binary matrix R = {r/j}. However, by storing Pd i, PfJ

and R = {rij}, the total memory required reduces to
12.6 Mbytes.

Despite the complexity analysis results for the com-

binatorial nature of multiple fault problem, the optimal

solution for this problem can be found via a branch-and-

bound. In the branch-and-bound algorithm: (1) a bi-

nary tree is employed for the representation of the 0-1

combinations, (2) the feasible region is partitioned into

subdomains systematically, and (3) valid upper and lower
bounds are generated at different levels of the binary tree.

The main objective in a general branch-and-bound algo-
rithm is to perform an enumeration of the alternatives

without examining all 0-1 combinations of failure sources.

Details of branch-and-bound algorithms can be found in

any integer programming textbooks, e.g., [8, 13, 17, 18].

Ranked Set of Most Likely

Candidates

In this section, we consider the problem of determining

a ranked set of solutions to the multiple fault diagnosis

problem. That is, the problem is to find L sets of most

likely candidates. We present the following sequential

approach to solve this problem:

Initialization: Find the first most likely candidate X x

for the multiple fault diagnosis problem.

Algorithm:

DO for l = 2, ..., L, or until no feasible solution exists,

Eliminate the set of candidates { X I,...,X 1-1 }

from the problem and generate the l-th most likely
candidate.

END

The first part of the algorithm, i.e., initialization, can

be solved by the algorithm of previous section. In this

section, we present an approach to solve the second part
of the sequential algorithm. In this approach, we solve

a series of modified copies of the initial multiple fault

diagnosis.

Ranked Algorithm: Modified Copies of
MFD Problem

In this approach, at each iteration, we solve a series

of multiple fault diagnosis problems assuming that the
states of some of the failure sources are known prior to

diagnosis, i.e., some failure sources axe known good, and
some of them are known bad (definitely faulty). A similar

approach has been considered by Murty [12] for deter-

mining a ranked set of solutions to assignment problems,

and was recently enhanced by Cox et. al. [5] within the

context of multi-target tracking. For simplicity, we rep-

resent the multiple fault diagnosis problem by four-tuple

F=(MFD, G, B, X), where

1. MFD is the problem in (10)-(14),

2. G C S represents the set of known good failure

sources, i.e., for all si q G, ::i = 0 (or si _ X),

3. B C S represents the set of'definitely faulty failure

sources, i.e., for all si E B, xi = 1 (or si E X),



4. X is the optimal solution to the MFD problem sub-

ject to G and B.

Note that the number of unknown failure sources in

F=(MFD, G, B, X) is m - IGI- IBI. Initially, G and B

are empty, i.e., F l = (MFD, 0, 0, Xx). Subsequent solu-
tions to F 1 are found by solving a succession of multiple

fault diagnosis problems that are created from F 1 by a

process called partifioning. A problem, F, with the best

solution X and size m - IGI- [B h is partitioned into a

set of subproblems, F1, ..., Fm-ICI-IBI+I, such that:

• The union of the set of possible solutions to rl

through Fm-IGI-IB[+I is exactly the set of possible
solutions to F,

• The sets of possible solutions to FI through

Fm-lal-IOl+I are disjoint, and

" Fm-lal-lBl+l has only one solution X.

Let us assume that F r is a dummy subproblem

that is used to generate the subproblems rl through

Fm-ICI-IBI+i from F. The following procedure shows:
(1) how to update the subproblem F _ = (MFD, G r,

B _, X_), and (2) how to make subproblem Fl = (MFD,

at, Ba, Xt) form F _ for I = 1,...,m- Ial- [BI, se-

quentially, and finally, (3) F,n-Ial-IBl+l ----Fr" Initially,
r'=r. Then, for I = 1, ..., m-[G[- [B[, r r is partitioned
as follows:

• Select any si E S - (G _ tO Br),

• Ifsi E X, then G_ ,---G_tO{si} and B _ _-- B'tO{si},

else Bl ,--- B _ W {s_} and G _ _ G r tO {si}.

Note that, at each iteration, the problem r r is partitioned

into two disjoint subproblems. This is because we force

the subproblems to be different in the status of only one

failure source si in the system, i.e., we add si to the

set of definitely faulty failure source, in one subproblem,

and to the set of known good failure source, in another

subproblem. In addition, X cannot be a solution to rl

for l = 1, ..., m - ]G] - IB[. Further more, F r is the only
subproblem which contains X and only X as its solution.
This is because Br=X and Gr=S - X.

As an illustration, let us consider a simple system with

3 failure sources {sl, s2, s3}. In addition, let us assume

that the optimal solution for the MFD problem in this

case is X={s,}, i.e., r I = (MFD, 0, 0, X 1 = {st}).
Therefore, the MFD problem can be partioned into the

following subproblems; Fx = (MFD, G = {st}, B = 0,

X,); = (MFD, G = $, B = {sl,s_}, X2), Fa =
(MFD, e = {s2}, B = {sl, s3}, Xs), and F4 = (MFD,

a = ss}, B = {sl}, X4).

Therefore, we partition F 1 according to its best so-

lution X l, and place the resulting subproblems to-

gether with their best solutions, except the last one, i.e.,

Fm-lal-lBl+l, on a priority queue of four-tuple (MFD,
G, B, X). We then find a problem in the queue that

has the best solution. The solution of this problem is the

second-best solution to the multiple fault diagnosis prob-
lem. Now, we remove this problem from the queue and

replace it by its partitioning. The best solution found in
the queue now is the third-best solution to the multiple

fault diagnosis problem, and so on. The pseudocode for
the L-ranked algorithm is shown in Figure 4.

Initialization: Find the first solution X 1 to MFD

problem, and initialize a priority queue of four-tuple

problems to contain only FI=(MFD, 0, 0, X1). The top

problem on this queue will always be the problem with

the highest likelihood solution.

Step 1: Clear the list of solutions to be returned.
Step 2: DO until priority queue of problems is empty.

Step 2.1: Take the top problem

F=(MFD, G, B, X) off the queue.
Step 2.2: Add X to the list of solutions.

Step 2.3: If the cardinality of solution set is L, Stop.

Step 2.4: Let F r =F,

Step 2.5: DO for l = 1,...,m-[GI- [B[,

Step 2.5.1: Partition F _ into F _ and F' as follows:

Step 2.5.2: Select any si G S - (G _ tO B_),

Step 2.5.3: If si E X, then

G' a" u and B -- B" tO{*,},
else B' _-- B _ O {si} and G _ ,--- G r U {si}.

Step 2.5.4: Find the best solution .\" to F'. If X'

exists, add (MFD, G', B', X') to the queue.
END

END

Figure 4: Pseudocode for L-Rank MFD Algorithm

Since each subproblem is NP-hard, we use the near-

optimal MFD algorithm of previous section to solve

the ranked set problem near-optimally, i.e., X is a near-

optimal solution for the problem F=(MFD, G, B, X).
Thus, it is possible that l-th solution, i.e., X t , has higher
likelihood than the k-th solution, i.e., X t, where k > I.

Note that, we perform one partitioning for each of the L-

best solution, in the worst case, each partitioning creates

O(m) new problems. This creates up to O(Lm) multi-

ple fault problems and insertions on the priority queue.

Each problem takes at most O(m[T! [) time to solve near-
optimally, and each insertion take, at most O(log(Lm))

time. Therefore, the worst-case execution time of this

approach is O(Lm(m[T! ] + log(Lm))), or approximately,

O(Lm2ITII).



V. Multiple Fault Diagnosis with

Repetitive Tests

A reasonable and common situation in unreliable test-

ing is to apply a test several times to improve the con-

fidence about a given hypothesis (a set of multiple fault

candidates). For example, in order to reduce the prob-

ability of error, i.e., false alarm and missed detection of

some faults (disorders or diseases), a system (a patient)

may be tested multiple times, and because of imperfect

nature of tests, the test results may be different. In this

section, we assume that each test tj has been applied nj

times in which it passed and failed/lj and T/j times, re-

spectively, i.e., nj = pj + rlj. Note that applying a test
at different times is equivalent to applying independent
tests with the same structure. In this case, let us assume

that 7"/ and Tp denote the set of failed and passed tests

(without any redundancy), respectively, and T! NTp may
not be empty. Thus, the problem is:

max J(x__,_y) = _,jer, rlJ ln(1 - yj) +
_,[

Eiml Zi{_tk6Tp #k ln(p_, ) + ln(pi)} (20)

subject to (11)-(14). This problem is similar to the prob-
lem in (10). Thus, the algorithms in previous sections can

be readily applied to solve this problem. In this case: (1)

in the first step of the MFD algorithm, ci(A__) is a func-

tion of _uk for k = i,..., ]Tp[, i.e., the number of time

that test t_ passed, and (2) in the second step of the

MFD algorithm, the optimum of the objective function
x--{-Z-u(._. _ for

with respect to _yis replaced by y_(Aj) = ,J+_i _ Jj

j - 1, ..., Irl].

VI. Examples

Example 1: In this example, we consider: (1) a simple

diagnostic problem with m = 20 failure sources (disor-

ders) and n = 20 tests (manifests) which was used as an

example in [3]; ( Example 1.a- 1.d), and (2) a diagnostic

problem with m = 15 failure sources and n = 10 tests

from [9]; (Example 1.e). The false alarm probabilities for

these systems are all zero, i.e., Pfq = 0 for i = 1, ...,m

and j = l,...,n and Tp= T - T 1. Figures 5 and 6 show:
(1) the set of failed tests TI, (2) diagnostic results, (3)

likelihood, (4) processing time and total number of runs

to converge to the diagnostic results, (5) total processing

time and total number of runs, and (6) approximate du-
ality gap. The diagnostic results are based on the near-

optimal multiple fault diagnosis algorithm in Figure 3.

The processing times for these examples are obtained by

running the MFD algorithm on a SPARC 10. Binglin

et. al. [3] presented a genetic algorithm which required

Ex. (jlti G 2"I ) (JII*LE X} P_ob(XITI,Tp)

1., (1, 2_4, s_Trs_ In, :a ) {s.*, xo_., 17} a,6_.-o9
1.b {T, IS, 9, 11, 14, 15} (4, 5, IT, _0} 1.32e -10

l.e { 1, 3, 4, 6, V, il, 13, 11f, 16]* (1, S, 9, 14, 16, 17) 6.6ge -13

l.d { 1, 21, 3, Tt 8, 13, 13, 1Y) {4,5, R, 14, 19) 3.40¢--09 __

l.e (I_ 314p Sp T r a I 9, I0} {3, 419 e 13, 13) 7.?'re -U2

Figure 5: MFD Algorithm Results for Examples 1.a-l.e

Ex. Couver[[ence

# Ruas Time (see) _R_us
1 ._. 6 O. 170 S8

1 .b 3 0.009 65

1 .c 3 0.050 68

1 ,d 1 0.004 64

I .e 3 0.007 $8

TotM Approximate

Time (see) Dualit_ Gap

0.310 4.66%

0.340 4.76%

0.340 4.60% "
1.83 4.69_

0.15 4.52%

Figure 6: MFD Algorithm Results for Examples l.a-l.e

10 minutes to find the set of diagnoses in Example 1.a

with an IBM PS/2 Model 40 SX-20 MttZ microcomputer.
These results show the superior performance of our al-

gorithm compared to the algorithm in [3]. Miller et. al.
[9] have not reported the processing time for Example

1.e. However, the largest problem that they considered
contained 20 failure sources and 15 tests.

Example 2: In this example, we consider systems with:

(1) m=n=100, m=n=500 and m=n=1000, (2) the prob-

ability of each failure source is set to a random number

between (0.001, 0.5), (3) each test, on average, covers 5,

10 and 20 failure sources, (4) detection probabilities of
a test associated with its covered failure sources are set

to random numbers between (0,1), (5) the false alarm

probabilities are assumed to be zero, and (6) the num-
ber of failed tests are 5, 10 and 20. Figures 7, 8 and 9

show the simulation results for these systems. Each row

of these Figures represents the average of simulation re-

sults for 5 randomly generated systems. Note that, in

most of the cases, the average approximate duality gaps
are around 5%. However, in some of the cases, for ex-

ample, the last row of Figure 7, the approximate duality
gap is very large, i.e., 22.15%. In order to improve the

solution (or, equivalently, approximate duality gap), we

can apply the L-ranked algorithm. The average approx-

imate duality gap based on 2-ranked algorithm for the

last set of systems in Figure 7 reduces to 1.49%.

Example 3: In this example, we consider three systems

with 10 failure sources and 10 tests as in [15]. The false
alarm probabilities are assumed to be zero. The sim-

ulation results for 2 t° possible combinations of test re-

sults are shown in Figure 10. The second column shows
the number of correct cases out of 1024 possible com-

binations of test results. The third column shows the

weighted probability of correct cases. The columns cor-

responding to Nd and N! denote" the unweighted prob-

abilities of detection, i.e., the unweighted probability of
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Test IT! I # Ruus Time

Cover.ge (see)

s /o _6 O.lO
6 0.38

6 20 4 0.83

I0 5 3 0.25

10 ...... 10 12 2.01

10 20 9 3.01

20 5 1 0.11

20 10 2 0.85

20 20 16 23.39

Tot.l Approxim,t¢

# Runs Time Duality

(see) a,,
62 2.T0 4.25_Y*

63 3.11 3.T$_

T0 13.76 4.79%

63 3.30 --_i_%
60 12.00 5.26%

a_ 3;.oo ---0.s9%
35 0.9T 6.12%

38 28.81 10.96%

59 90.72 23.15%

Figure 7: Simulation Results for m=n=100

Aver&ge Coaver ence

Test I_ 1 J # Runs Time

Cover,g¢ (*e¢)
5 5 1 0.54

5 I0 3 1.02

0 20 16 T.13

0 1 0.48
10 1 1.20

10 20 15 19.23

20 5 1 0.56

20 I0 6 6.55

30 20 11 26.19

TotLI Approximtte

# Runs Time Duality

('e¢) ....
62 23.36 4.15%

T2 44.56 ---3196_*--

66 32.7T 4.23_fe

50 26.99 4.82%

60 46.68 4,60%

6T 85.37 6.60%

5! 50.41 3.7_

64 60.35 3.00%

64 164.06 1603%

Figure 8: Simulation Results for re=n=500

common faulty failure sources in the optimal and near-

optimal solutions, and false alarm, i.e., the unweighted

probability of faulty failure sources in the near-optimal

solution and not in the optimal solution. Figure 11 shows

the simulation results based on the 2-ranked algorithm.

The average weighted (unweighted) accuracy based on

the MFD algorithm and 2-ranked algorithm are 97.71%

(94.99%) and 99.96%(99.77%), respectively.

Example 4: In this example, we apply the MFD and

L-ranked algorithms to the medical example in [14, 19].

The system under consideration is for neuropsychiatric

diagnosis. The system consists of 26 disorders (failure

sources) from psychiatry and neurology which affect men-

tal status. A list of 56 _y_ptoms (tests) and signs was
assembled for each disorder. There are 384 links in the

system, each of which connects a disorder to a manifes-

tation. Similar to [14], five groups of test cases are used

to test the MFD and L-ranked algorithm. Manifesta-

tions are chosen randomly from the total set of 56 possi-

Avevltge Cottver[ence Total Approximste

West JTf J # Rmns Time # Runs Time Dutlity

c..... s- (,,_) (,,¢) Gap
s s = -.30 o_, ;o2.o0 6.00%
s lO 2 a.ss 73 t_.ss s.12%
s _o 2 s.02 sT _s.ss 4.00%
;0 s x 3.27 s4 sT.96 4.00%
10 10 _ _.03 08 09.03 4.27%

10 90 8 11.90 64 160.00 4.00%

20 8 1 3.26 83 103.99 4.20%

20 |0 11 50.29 ST 137.15 4,94%

30 20 28 139.14 T6 374,54 9.43%

Figure 9: Simulation Results for m=n=1000

Exemple Correct eLses N d Nj

# Times (out of 1024) J Wei[hted

3., 992 (_96: 60%) I 00.01% 08.65% 0.39%
3.b 971 (94.62%) . 96.61% 97,6_--.'.'.'.'.'._---0_31_Q_

3.c 053 (93.26%) 94.01% 07.60% 0.37%

Figure 10: MFD Alg. Results for Examples 3.a-3.c

Example Correct cases N d J_j,

# Times _out of 10241 [ Wei6hted

3., 1024 (100%) J 100% 100% 0.00%
3.b 1019 (99.51%) 99.92% 09.77% 0.06%

3.c 102_99_80_) 99.95% 99.92% 0.03%

Figure 11: 2-ra_ked Atg. Results for Examples 3.a-3.c

ble manifestations based on a uniform distribution. Each

group of test cases consists of ten different sets of manifes-
tations. Each case in the first test group has one present

manifestation (failed test); each case in the other groups
have 3, 5, 7 and 9 manifestations. If any randomly gen-

erated test result is inconsistent with the causal network,

the case is discarded and a new one is generated. The

inconsistent test results may occur because the causal

network used in the experiment has some perfect tests,

i.e., Pdij = 1 and Pfij -- 0. Thus, after applying the first
Lemma, and reducing the size of the problem, the sec-
ond Lemma may not be satisfied, i.e., there exists a failed

test that is not covered by any failure source. Simulation

results show that among all 50 cases MFD algorithm

and 2-ranked algorithm generate 98% and 100% optimal

solutions, respectively. Peng and Reggia applied their

competition-based connectionist methods to this causal

network. Their algorithm generated 74% of globally op-

timal solutions, and 90% of one of the three globally op-
timal solutions.

VII. Conclusion

In this paper, we considered the problem of construct-

ing optimal and near-optimal multiple fault diagnosis

in bipartite systems with unreliable (imperfect) tests.

We presented a multiple fault diagnosis algorithm based

on Lagrangian relaxation and subgradient optimization

method, which provides near optimal solutions for the

multiple fault diagnosis, and upper bounds for an optimal

branch-and-bound algorithm. Computational results in-

dicate that our algorithm can be used in systems with
as many as 1000 faults. In addition, we presented an

algorithm to generate the set of L-ranked multiple fault

candidates. In this algorithm, we find the most likely

candidate using the near optimal multiple fault diagno-

sis algorithm. Then, we partition the problem, based on

the first solution, to a set of disjoint subproblems. The

9



solutionsto thesesubproblemswith thehighestlikeli-
hoodrepresentsthesecondmostlikelycandidates.This
procedureis continueduntil L-ranked multiple fault di-
agnoses are found, or no more feasible solutions exist.

We showed that the computational complexity of this

approach is O(Lm2[TID, and therefore, applicable for

systems with as many as 1000 faults and tests. Finally,

we extended the multiple fault diagnosis problem to re-

dundant or repetitive tests. In this case, the problem is

very similar to the original multiple fault diagnosis prob-

lem, and therefore, the MFD algorithm can be extended
to this problem as well.

In this paper, we assumed that the test results are

known prior to diagnosis. That is, we considered the

problem of multiple fault diagnosis with unreliable tests.

The problem of sequential multiple fault diagnosis strat-

egy (testing) with unreliable tests is an important prob-

lem in field maintenance. Furthermore, the order of par-

titioning in the L-ranked algorithm may improve the ac-

curacy of the near-optimal solutions. We expect to in-
vestigate these challenging issues in our future efforts.
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Abstract

In tiffs paper, we consider the problem of constructing optimal and near-optimal multiple

fault diagnosis (MFD) in bipartite systems with unreliable (imperfect) tests. It is known that

exact computation of conditional probabilities for multiple fault diagnosis is NP-hard. The

novel feature of our diagnostic algorithms is the use of Lagrangian relaxation and subgradient

optimization methods to provide: (1) near optimal solutions for the MFD problem, and (2)

upper bounds for an optimal branch-and-bound algorithm. The proposed method is illustrated

using several examples. Computational results indicate that: (1) our algorithm has superior

computational performance to the existing algorithms (approximately three orders of magnitude

improvement over the algorithm in [3]), (2) the near optimal algorithm generates the most likely

candidates with a very high accuracy, and (3) our algorithm can find the most likely candidates

in systems with as many as 1000 faults.
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I. Introduction

With the increased recognition of importance of design for testability, there is an increasing

trend towards the use of smart sensors for on-board system health management. Tile results of

on-board tests are available to the ground test systems and operators as a block of symptoms.

Due to improper set up, operator error, electromagnetic interference, environmental conditions, or

aliasing inherent in the signature analysis of on-board tests, tile nature of tests may be unreliable

(imperfect). Imperfect tests introduce an additional element of uncertainty into tile diagnostic

process: the pass outcome of a test does not guarantee tile integrity of components under test

(because the test may have missed a fault), or a failed test outcome does not mean that one or more

of the implicated components are faulty (because the test outcome may have been a false Marrn).

Consequently, ihe diagnostic procedures must hedge against this uncertainly in test outcomes.

In this paper, we consider the problem of constructing optimal and near-optimM multiple fault

diagnosis in bipartite digraphs with unreliable tests. This problem is a central a.nd long-standing

concern in system fault diagnosis, and medicM decision making [10]. When the false alarm probabil-

ities of all tests are zero, the problem simplifies to the parsimonious covering theory (or probabilistic

causal model) discussed in [16]. Peng and Reggia [15] proposed a competition based connectionist

method to subdue the problem of combinatorial explosion in computing the posterior probabilities

of all possible combinations of failure sources in probabilistic causal models. However, this method

does not guarantee a global optimum and suffers fi'om large computation times even for prohlems

with small numbers of failure sources, m=26.

Genetic algorithms are offered as an alternative to the connectionist methods [3, 9]. Genetic

algorithms are based on an analogy with Darwin's biological evolutionary theory in which a group of

solutions evolves via natural selection. It emulates the rules of biological evolutionary process, such

as reproduction, crossover, mutation, and natural selection, etc. At each iteration, a population of
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individuals is established, where each individual corresponds to a point in tile search space. Tile

objective function is evaluated for each individual to rate its fitness. Then, a next generation is

formed based on the survival of the fittest. Therefore, the evolution of individuals from generation to

generation tends to result in fitter individuals (i.e., solutions) ill the search space. These algorithms

converge extremely slowly, and have been applied to small problems with m=20 failure sources

(causes, disorders) and n=20 tests (manifestations, symptoms).

Wu [20] proposed a decomposition method based on common and disjoint causa.1 (failure source)

relationships among the given symptoms (tests). This method decomposes the original problem

into smaller and independent subproblems, and therefore, increases the performance and efficiency

of multiple fault diagnosis. However, this approach is not applicable for systems with large numbers

of l_-u.decomposable causes and symptoms.

hl this paper, we present a novel approach, using Lagrangian relaxation, to solve multiple fault

diagnosis problem. By defining new variables and constraints, the multiple fault diagnosis (MFD)

problem reduces to a combinatorial optimization problem with a. set of equality constraints. The

constraints a.re relaxed via. Lagrange multipliers. The relaxation procedure generates an upper

bound for the objective fin_ction. The procedure of minimizing the upper bound via a subgradient

optimization produces a sequence of solutions that are modified, in a computationally effective

way, to produce a sequence of feasible solutions to the MFD problem. If the objective function

value for the best feasible solution and the upper bound are the same, the feasible solution is the

optimal solution. Otherwise, the difference between the upper bound and the feasible solution,

termed the approximate duality gap, provides a measure of suboptimality of the MFD solution.

Alternatively, the optimal solution can be found via a tree search (or branch-and-bound) procedure.

The computational complexity of the near-optimal algorithm is a linear function of the number of

failure sources, m and the number of failed tests, 17"II.

Next, we present an approach to determine a ranked set of multiple fault diagnosis solutions
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(i.e., the best, second best, ..., L-th best diagnosis). In this approach, following Murty [12] and

Cox et. M. [5], we: (1) partition the MFD problem, based on its best solution, into disjoint

subproblems; (2) solve the subproblems and sort them by the values of their solutions, and (3)

select the subsequent best solutions. One of the advantages of this approach, compared to tile

one in [14], is that since tile subproblems are disjoint, the optimal solution of each subproblem is

different from the others. Finally, we show that the MFD algorithm can be extended to solve

multiple fault diagnosis problems with repetitive application of tests.

The paper is organized as follows. In Section II, we formulate the multiple fault diagnosis prob-

lem in a bipartite system. In Section III, we present a near-optima.1 algorithm based on Lagrangian

relaxation and subgradient optimization method to diagnose multiple faults, and generate an upper

bound for the likelihood of multiple fault candidates. The upper bound can be used in a.n optimal

branch-and-bound algorithm. The multiple fault algorithms for a set of L-ranked multiple fault

diagnoses are presented in Section IV. In Section V, we consider the multiple fault diagnosis prob-

lent with repetitive tests. Several examples are presented in Section VI. Finally, in Section VII, we

summarize the results and discuss future research issues.

II. Probleln Formulation

The MFD problem in bipartite systems with imperfect tests consists of a bipartite digraph

DG = {S,T,E}, where

• S = {st,...,sm} is a finite set of independent failure sources (failure nodes) associated with

the system;

* T = {h,t2,...,t,} is a finite set of n available binary outcome tests (test node), where the

integrity of system failure sources/components/modules can be ascertained;
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si Pdq lj

fail • .e fail

pass _ 1 - Pfq :0 pass

Figure 1: Detection-False-Alarn_ Probability of Failure Source si and Test tj

• E = {eij} is the set of digraph edges (links) specifying the functional information flow between

the set of failure sources and the set of tests in the system.

The input requirements of the failure nodes and edges of tile digraph are as follows:

1. Failure node: A priori probability vector of failure nodes P = [p(sl), ...,p(sm)], where p(si) >

0 is the a priori probability of failure source si.

° Link (edge): A set of probability pairs P/j = (Pdo, Pfij) representing the detection-false-

alarm probabilities of the set of tests, where Pdij and Pfij are the detection and false alarm

probabilities of test tj and failure source si, respectively (see Figure 1). Figure 2 shows a

bipartite digraph model.

The problem is to find the most likely candidates X C S that are consistent with the results of

applied tests. This is formulated as:

maxProb(X[Tp, TI) (1)
XCS

where Tp C_T and T! C_ T denote the set of passed and failed tests, respectively. Using Bayes' rule

and eliminating the constant factor Prob(Tn, 7'I) , we obtain the following equivalent maximization

problem:

maxProb(T.t, TplX )Prob( X ) (2)
XCS
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Pl l

Sl _ t 1

si _ tj

Pmn

Figure 2: Illustration of the Bipartite Digraph Model

For notational simplicity, we define binaxy vector x_ of size m, where xi = 1 if fMlure source

si E X; xi = O, otherwise. Note that, given a. multiple fault candidate X, the tests are independent.

Thus, the above probabilities can be evaluated as follows:

Prob(TplX) = 1-I Pl'ob(O(tk) = p[X) (3)

lkeTp

Pr°b(TIIX) = ]-I Prob(O(tj)= fiX) (4)

t jET I

m

Prob(O(.tj) = p]X) =/-I(1 - Pdij)_='(1 - pfq)O-_,)
i=l

rrL

: [l-i( 1 _ pf(i)][1-i( 1 - Pdq
i=1 i-----11 - Pfij )_i]

(5)

Prob(O(tj) = fiX) = 1 - Prob(O(tj) = plX) (6)

m

Prob(X) = II P(Si)_:i( 1 - P(Si)) ('-*')
i=1

" " _t _-%'
= [i-I(1 - P(s'))l[1]( 1- p(sd'_*'l

i=1 i=I

(7)

where O(tj) E {p(=pass), f(=fail)} is the outcome of test ti, and Pdlj = 0 and Pfq = 0 for

_q ¢ E.
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III. Problem Solution

One approach for generating tile optimal multiple fault diagnosis is to consider all possible

combinations of failure sources, i.e., tlle power set 2 s, and select the multiple fault candidate with

the highest likelihood function ill (1). However, tile computational complexity of this approach is

exponentiM in tile number of failure sources m. In the following, we present an algorithm, based on

Lagrangian relaxation and subgradient optimization method, to genera.te a ne_r-optimM solution

for this problem.

By substituting (3) and (4) into (2) and taking the natural logarithm of the resulting objective

function, tile problem is equivalent to:

max _ ln(Prob(O(tj)= fiX))+
XCS

- fj ET!

E ln(Prob(O(tk) = pIX))+

tk ETp

ln(Prob(X)) (s)

By substituting (5), (6) and (7)' into (8), the problem reduces to:

max _ ln(1 -[_-l( Pd'j )_'][fi(_ff,j)]) +

XC_S tjeT I _'=_l Pfij i=1

ra _ m-P ik

+ +
t_ETp i=1 i=1

Yrt

_-]{xiln(vl) + ln(1 - p(si))}
i=1

(9)

where pi = _, P--ffij = 1 - PrO and P---dO = 1 - Pdij for i = 1, ..., m and j = 1, ..., m. By

(i) eliminating constant factors __=1 ln(1 - p(si)) and )"_4kETp )--_'m=lIn(P---f/k), and (ii) defining new

variables yi = [I'Ii=1(_) ][l'l_=_(Pf0)] for tje TI, and taking the natural logarithm of it, the

problem reduces to the following optimization problem:

m Pdik ,

maxJ(x_,_y) = _ ln(1 - yj) + _ z,{ __. ln(_) + In(p,)}
(10)
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_P--_J" _ ln(P--ffi/)subject to: ln(yj) = _.__xiln(_) + (11)
i=1 Pfij i=1

0_<yj_<l for lj E TS

xi=0orl for i=l,...,m

(12)

(13)

where _y= [yl,---, YlTyl], and I.Idenotes set cardinality. For simplicity, we define hj = _n= 1 ln(Pflj )

for tj E TI. The following lemmas present two important properties of the MFD problem.

Lemma 1: If Pdlk = 1 for any passed test tk, then the optimal solution does not contain failure

source si, i.e., xi=O (or equivalently si _ X).

Proof: If si E X (or xi = 1), then the second part of the objective function in (10), and,

consequently, the overall objective function will be unbounded, i.e., it would be -oc.

Using Lemnaa 1, the size of the MFD problem can be reduced by removing all failure sources

{silPf_k=0, Pdik = 1 and tk E Tp} from the problem.

Lemma 2: If the false alarm probabilities of a failed test tj are zero, i.e., Pfij=O for i = 1, ...,m,

then tile optimal solution contains at least one xi=l, for which Pdij > 0. That is, the optimal

solution must cover the fai]ed tests.

Proof: We prove this lemma by contradiction. Pfij=O for i = 1, ..., rn results in hj=O. If for all

Pdij > O, xi=O, then we have ln(yj)=0 and, hence, yj = 1. Thus, ln(1 - yj), the first part of the

objective function in (10), and, consequently, the overall objective function will be unbounded.

Using Lemma 2, we define the following constraints:

Ax>e for t.iETf and h./=0 (14)

where A = {atj} is a binary matrix of size IHI xm; H = {tj e TIIhj = 0 for j = 1,...,n}; each

row l of matrix A corresponds to a failed test tj with h i = 0; a;i=l, if Pdij > 0 for i = 1,..., m;

otherwise, ati=O, and e_is a vector of l's.

Adding the set of constraints (14) to the problem in (10)-(13) results in a smaller search space
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and tighter upper and lower bounds (which result in faster convergence), and, therefore, a better

estimate of the optimal solution.

Lemma 3: When all tests are perfect, that is, Pdij = 1 and Pfq = 0 for i = 1,...,m,j = 1,...,n

and ei.i E E, using Lemmas 1 and 2, the problem reduces to the following set-covering problem:

max_ _es- ln(pl)xi subject to (13) and (14), where S- is the reduced set of failure sources, i.e.,

S after eliminating the failure sources satisfying Lemma 1.

Proof: This lemma can easily be proved by Lemmas 1 and 2. Pdij = 1 and Pfij = 0 for the

failed tests results in hj = yj = 0. Therefore, the first part as well as the second part (using Lemma

1) of the objective function in (10) can be eliminated, and the problem reduces to the traditional set

covering problem. The set covering problem can be solved optimally by any optimM set-covering

algorithm [2, 7], or near-optimally via a Lagrangian relaxation and subgradient optimization method

[1].

By relaxing the constraints in (11) via Lagrange multipliers { Aj}, we obtain the Lagrangia.n

function:

max Q(A,x,_y)=
__,_Y

{In(1 - yj) + Ailn(y./)} +
t, eTj

F_,x,( F_,1"( )
i=l gkETp

Pdij

+in(p,)-
t, ET!

beTj
WL

(15)

tj eT 1 i=1 q eT 1

subject to (12), (13) and (14), where fj(Aj, yj) and ci(__) denote the first and second expressions

in the brackets in (15), respectively. The important point here is that the maximization of La-

grangian function in (15) with respect to z and y__can be carried out independently for each fixed A.

Maximization of Q(A,x_,y_) with respect to _yis equivMent to:

max fj(Aj, yj)= ln(1 - yj)+ A/ln(yj) for tje 7"1
0<u_<l

(16)
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-- -:Z-u A" value of y_(Ai), the first and see-The maximum of this function is y_(A/) )'- l+x, ( :)" At the

ond derivatives of the function are zero and negative, respectively, indicating that fj(Aj, yj) is a

maximum (where u(.) is the unit step function).

The maximization of the Lagrangian function Q(__,x_,_y) with respect to ._zis equivalent to:

m

maxW(A_, x_) = __, ci( A_)x, (17)
- i=1

subject to (13) and (14), which is a traditional set-covering problem. This problem has been

extensively studied by the operations research and management science communities [2, 7]. There

exist a number of optimal algorithms, based on feasible solution exclusion constraints, Gomory

f-cuts and tree-search procedures for this problem [2, 7]. Let ._z*(__)be the optimal solution of this

set-covering problem. Thus, Q(A_, x_*(__), y*(A)) is an upper bound for the optimal objective value

in (10). This result is summarized in the following Lemma:

Lemma 4: Let J* be the optimal value of the objective function in (10). Then Q(_A, ._z'(_A),

y_*(A)) _> J" for an)' A.

Proof: Let x ° and _y° be the optimal solution of the problem in (10). Thus, Q(A,x°,y °) <_

Q(_A, x*(_), y*(_A)). This is because, x*(A_) and y*(_A) are optimal with respect to the relaxed problem

in (15). Since the optimal solutions x_° and y° satisfy (11), we have Q(A,z_°,_f) - J', and therefore,

J* _< Q(A, x._*(_A),y*(_A)).

After evaluating the optimum values x*(_A) and y*(_A) for a fixed A, the problem reduces to one

of minimizing the upper bound Q(_A)= Q(A,x*(A),y'(A)). Since Q(A) is a piecewise differentiable

function of A, this problem cannot be solved using differentiable optimization algorithms. As an

alternative, we use a subgradient optimization algorithm [13] to produce a sequence of upper bounds

for Q(A_).

Q(A )=mlnhQ(A), theIf we denote by Q*, the optimal Lagrangian function value, i.e., Q*= * " "

difference (Q* - g*) is termed the exact duality gap. Since the problem in (10)-(14) is NP-hard [4],
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we may never know the global optimal solution J*. Instead, we construct several feasible solutions

to this problem from the Lagrangian function solution, and select the best feasible solution from

the set. Let J(A_*,x_I,y f) be the best feasible value, then we have, J(__',z_f,_yS) _< J" _< Q'. A nice

feature of the Lagrangian relaxation method is that the approximate duality gap:

Q* - J(),*, x__f,_.yS) = (Q* - J*) -I- (J* - J(A',xs, yS)) _> 0 (18)

provides an overestimate (by the value of the exact duality gap, (Q" - J') ) of the error between

the global optimal solution and the best feasible solution found. Thus, in some cases, even though

the best optimal solution found is the optimum solution of the problem, the approximate duality

gap may be nonzero, see Example 1 in Section VI. Based on extensive computational experiments,

the relative approximate duality gap,/;J, defined by:

Q. • f- J(__A ,x ,yf)
_g = I - (19)J(A', x_/,_yz) I

is small for the multiple fault diagnosis algorithms (typically less than 5%). The pseudocode of the

multiple fault diagnosis algorithm is presented in the next section.

A. Multiple Fault Diagnosis Algorithm

Let (x__l, yl), Q,_i,,, Q,,b and Qtb be the best feasible solution found, minimum upper bound,

current upper bound and maximum lower bound (function value based on the best feasible solu-

tion found, i.e., J(x_Y,yI)) for Q(__,.__z,y), respectively. The pseudocode of multiple fault diagnosis

algorithm is shown in Figure 3.
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Initialization: Initialize: (1) Ai = 1 for j = 1,..., ITA, (2) Qm . = o_, (a) Q,b = -oo, and (4)

set iteration count t = 1. The reason for initializing A_ = 1 is that it results in y_ = 0.5.

Step 1: Find optimum values x*(_A) by solving the set-covering problem in (17).

Step 2: Find optimum vMues y*(__) where y_(Aj) = _--_----u()9) for j = l, [TII.__ 1+),.1 "'"

Step 3: Evaluate y(z_,*(__)) using equation (11).

Step 4: Update x l, yf, Qmin, Q,_.band Qt_, a.s follows:

• If J(x*(_A),_y(._z*(A_))) _> Qtb, then X__f = .___'*(*_), _yf -- y(X"()_)),

and Qlb = J(x_'(_A), y_(x_*(_A))),

• Q_b = Q(__,_*(A),_y*(A)),

• Qmi, = min(Q,_,:,_, Q_,b).

Step 5: Calcula-te the subgradient d.i = ln(_)- {)-'_n=1 x_(_A)ln(Pd'J) ,...,P.[i," "4- hi} for j = I 17)1

x--ITjl d 2 = 0 since in this case we cannot define a suitable step size.Step 6: Stop if z_,j=l j

¢(oQ.b-O,O
Step 7: Define _ step size _ by/3 = -j (_lT_ld_) where initially f = 2. If Qmi,_ has not

decreased in the last 10 iterations of the subgradient procedure with the current value

of f, then f is halved. This approach to deciding the value of f is based ol, the

procedure of Fisher [6]. The 2-_,'ameter o. with typical value 1 _<o _< 1.1 is to ensure

that fl does not become too small as the gap between Q_ and Qtb decreases [1].

Step 8: Stop if f _< 0.05 or t _> 100 (or any other suitable stopping criteria).

Step 9: Update the Lagrange multipliers ,kj as follows: _ = max(0, ,kj +/3dj) for tj E TI,

t _t+l, and go to step I.

Figure 3: Pseudocode of MFD Algorithm
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B. Computational Issues

The computational complexity of MFD algorithm for all steps except the first step is O(m[Tf]).

It is well known that the set-covering problem is NP-hard [11], and therefore, the first step of the

multiple fault diagnosis algorithm limits the size of the problem that we can solve.

One of the important points here is that a near-optimal solution as well as an upper bound

solution for the set-covering problem can be found via Lagra.ngian relaxation method [1] in a manner

similar to the ._,IFD algorithm. Let x'_(A_) and xU(A) denote the near-optimal (best feasible solution

found) and upper bound solution for the set-covering problem, respectively. Note that any feasible

solution for the set-covering problem is a feasible solution for the multiple fault diagnosis problem.

However, for a. given _A, the best feasible solution for set-covering may not be the best feasible

solution for the multiple fault diagnosis problem. Therefore, we have: J(._z'_(_A),_y(x'_(_A))) _< J" _<

Q(_A,._-'(_A),y'(_A)) _< Q(_A,.z_'_'(_A),_f(_A)). Thus, using .z'"(A) and .Zn(_A), we can generate a sequence

of upper and lower bounds to the multiple fault diagnosis problem. In this case, the multiple

fault diagnosis algorithm should be modified as follows: replace the optimal solution x*(_A) in the

algorithm with the near-optimal solution x'_(_A), except in Q,,b where x*(A_) should be replaced by the

upper bound solution x"(_A). By this modification, the computa.tional complexity of this approach

reduces to O(m[Tl[), and therefore, can be applied to large-scale systems. Note that, because of

storage complexity of storing Pdlj and Pflj for all failure sources and tests, the available memory

of a given computer may limit the largest size of the problem that we can solve.

In large-scale systems, it is practical to assume that the detection and false alarm probabilities

of each test tj is the same for all failure sources connected to it, i.e., Pdii=Pdj and Pfii=Pfi,

if eq E E, otherwise, Pdij=O and Pflj=O. In this case, we define a binary reachability matrix

R = {rij} such that tlj = 1 if eij E E, otherwise, rq = O. The detection and false alarm

probabilities of each test tj for each failure source si can be evaluated as follows: Pdij = rqPdj
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and Pfij = rijPfj. Note that, in this case, the binary matrix R = rij can be stored in a bit-

compacted format, and consequently, tile storage complexity of tile problem reduces by a factor of

approximately 2K, where I( is the number of bits for representing a floating variable in a given

computer. For example, the storage complexity of the MFD problem for a system with 10,000

failure sources and tests when K--32 bits (or equivalently 4 bytes) are 800 Mbvtes for storing Pdij

and Pf_, and 12.5 Mbytes for storing the binary matrix R = {r_j}. However, by storing Pdj, pfj

and R = {rij}, the total memory required reduces to 12.6 Mbytes.

Despite the complexity analysis results for the combinatorial nature of multiple fault problem,

the optimal solution for this problem can be found via a branch-and-bound. In the branch-and-

bound algorithm: (1) a binary tree is employed for the representation of the 0-1 combinations, (2)

the feasible region is partitioned iato subdomains systematically, and (3) valid upper and lower

bounds are generated at different levels of the binary tree. The main objective in a general branch-

and-bound algorithm is to perform an enumeration of the alternatives without examining all 0-1

combinations of failure sources. Details of branch-and-bound algorithms can be found in any integer

programming textbooks, e.g., [8, 13, 17, 18].

IV. Ranked Set of Most Likely Candidates

In this section, we consider the problem of determining a ranked set of solutions to the multiple

fault diagnosis problem. That is, the problem is to find L sets of most likely candidates. We present

the following sequential approach to solve this problem:

Initialization: Find the first most likely candidate X 1 for the multiple fault diagnosis problem.

Algorithm: DO for l = 2, ..., L, or until no feasible solution exists,

Eliminate the set of candidates { XI,...,X t-1 } from the problem and generate

the l-th most likely candidate.
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The first part of the algorithm, i.e., initialization, can be solved by the algorithm of previous section.

In this section, we present a.n approazh to solve the second part of the sequential algorithm. In this

approach, we solve a series of modified copies of the initial multiple fault diagnosis.

A. Ranked Algorithm: Modified Copies of MFD Problem

In this approach, at each iteration, we solve a series of multiple fault diagnosis problems as-

suming that the states of some of the failure sources are known prior to diagnosis, i.e., some failure

sources are known good, and some of them are known bad (definitely faulty). A similar approach

has been considered by Murty [12] for determining a ranked set of solutions to assignment prob-

lems, and was recently enhanced by Cox et. al. [5] within the context of multi-target tracking. For

simplicity, we represent the multiple fa.ult diagnosis problem by four-tuple F=(MFD, G, B, X),

where

1. MFD is the problem in (10)-(14),

2. G C S represents the set of known good failure sources, i.e., for all si E G, xi = 0 (or si _ X),

3. B C_ S represents the set of definitely fault)' failure sources, i.e., for all si E B, xi = 1 (or

sl _ X),

4. X is the optimal solution to the MFD problem subject to G and B.

Note that the number of unknown failure sources in F=(MFD, G, B, x) is m- Ial - [BI. Initially,

G and B are empty, i.e., F 1 = (MFD, 0, 0, XI). Subsequent solutions to [,1 are found by solving

a succession of multiple fault diagnosis problems that are created from r 1 by a process called

partitioning. A problem, P, with the best solution X and size m - IGI - IBI, is partitioned into a

set of subproblems, F1, ..., Fm_IGI_IBI+I, such that:

• The union of the set of possible solutions to F1 through F,,_-Ial-lSl+l is exactly the set of

possible solutions to F,
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* The sets of possible solutions to F1 through I?m-IGI-IBI+I are disjoint, and

* Fm-lal-IBl+l has only one solution X.

Let us a.ssume that F _ is a dummy subproblem that is used to generate the subproblems FI

through Fm-Icl-181+l from F. The following procedure shows: (1) how to update the subproblem

F" = (MFD, G r, B _, X_), and (2) how to make subproblem Ft = (MFD, G_, Bt, X,) form F r for

l = 1, ..., m- [G[- [BI, sequentiMly, and finally, (3) F,__IGI_IBI+ 1 = Fr. Initially, F_=F. Then, for

l = 1, ..., m- IG[- [B], F _ is partitioned as follows:

* Select a.ny si E S - (G _ U B_),

• Ifsi E X, then Gt _ G"U{si} and B" ,- B"U{si},else Bt ,- B_ U{si} and G" _ G"U{si}.

Note that, at each iteration, the problem F _ is partitioned into two disjoint subproblems. This is

because we force the subproblems to be different in the status of only one failure source si in the

system, i.e., we add si to the set of definitely faulty failure sources in one subproblem, and to the

set of known good fMlure sources in another subproblem. In addition, X cannot be a solution to

Ft for l = 1, ...,m- [G]- IBI. Further more, F_ is the only subproblem which contains X and only

X as its solution. This is because Br=X and G_=S- X.

As an illustration, let us consider a simple system with 3 failure sources {sl, s_, s3}. In addition,

let us assume that the optimal solution for the MFD problem in this case is X={sl}, i.e., F 1 =

(MFD, 0, 0, X _ = {s_}). Therefore, the MFD problem can be partioned into the following

subproblems; F_ = (MFD, G = {s_}, B = ¢, XI); F2 = (MFD, G = 0, B = {Sl,S2}, X2), Fa =

(MFD, (7 = {s2}, B = {Sl,Sa}, Xa), and P, = (MFD, (7 = {s2,sa}, B = {sl}, X,).

Therefore, we partition pl according to its best solution X 1, and place the resulting subproblems

together with their best solutions, except the last one, i.e., F,__IaI_IBI+1, on a priority queue of

four-tuple (MFD, G, B, X). We then find a problem in the queue that has the best solution. The
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solution of this problem is the second-best solution to the multiple fault diagnosis problem. Now,

we remove this problem from the queue and replace it by its partitioning. The best solution found

in the queue now is the third-best solution to the multiple fault diagnosis problem, and so on. The

psendocode for the L-ranked algorithm is shown in Figure 4.

Initialization: Find the first solution X 1 to MFD problem, and initialize a priority queue of

four-tuple problems to contain only FI=(MFD, O, 0, X1). Tile top problem on this queue will

always be the problem with the highest likelihood solution.

Step 1: Clear the list of solutions to be returned.

Step 2: DO until priority queue of problems is empty.

Step 2.1: Take the top problem F=(MFD, G, B, X) off the queue.

Step 2.2: Add X to the list of solutions.

Step 2.3: If the cardinMity of solution set is L, Stop.

Step 2.4: Let Fr =F,

Step 2.5: DO for l = 1,...,m- IGI- IB[,

Step 2.5.1: Partition F_ into F r and F' as follows:

Step 2.5.2: Select any s_ _ 5" - (G r U B_),

Step 2.5.3: If si E X, then G' _ G _ U {s_} and B r _ B _ U {s_},

else B' _ B r U {s/} and G r _ G _ U {s_}.

Step 2.5.4: Find the best solution X' to P'. If X' exists, a_ld (MFD, G', B', X') to

the queue.

END

END

Figure 4: Pseudocode for L-Rank MFD Algorithm
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Since each subproblem is NP-hard, we use the near-optimal MFD algorithm of previous section

to solve the ranked set problem near-optimally, i.e., X is a near-optimal solution for the problem

F=(MFD, G, B, X). Thus, it is possible that l-th solution, i.e., X t, has higher likelihood than

the k-th solution, i.e., X _, where k > I. Note that, we perform one partitioning for each of the

L-best solution, ill the worst case, ea_:h partitioning creates O(m) new problems. This creates up to

O(Lm) multiple fault problems and insertions on the priority queue. Each problem takes at most

O(ra]Tll ) time to solve near-optimally, and each insertion takes at most O(log(Lm)) time. There-

fore, the worst-case execution time of this approach is O(Lm(m[Tl[ + log(Lm))), or approximately,

O(Lra:lTII).

V. Multiple Fault Diagnosis with Repetitive Tests

A reasonable and common situation in unreliable testing is to apply a test several times to

improve the confidence about a given hypothesis (a set of multiple fault candidates). For example,

in order to reduce the probability of error, i.e., false alarm and missed detection of some faults

(disorders or diseases), a system (a patient) may be tested multiple times, and because of imperfect

nature of tests, the test results me_y be different. In this section, we assume that each test tj has

been applied nj times in which it passed and failed #j and _j times, respectively, i.e.: nj = #j +

y/j. Note that applying a test at different times is equivalent to applying independent tests with

the same structure. In this case, let us assume that T! and Tp denote the set of failed and passed

tests (without any redundancy), respectively, and Tl N T v may not be empty. Thus, the problem

is:

max F_,,Tjln( -yj)+
_'_ ,jeT I

m --P"dik x

In(p,)}
i=l tkETp

(20)

subject to (11)-(14). This problem is similar to the problem in (10). Thus, the algorithms in
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previous sections can be readily applied to solve this problem. In this case: (1) in the first step of

the MFD algorithm, ci(__) is a function of#k for k = 1, ..., ITv[, i.e., the number of time that test tk

passed, and (2) in the second step of the MFD algorithm, the optimum of the objective function

with respect to y is replaced by y_(),j) ,x= _u(Aj) for j = 1, ..., IT.t].

VI. Examples

Example 1: In this example, we consider: (1) a simple diagnostic problem with rn = 20 failure

sources (disorders) and n = 20 tests (manifests) which was used as an example in [3]; ( Example 1.a

- 1.d), and (2) a diagnostic problem with m = 15 failure sources and n = 10 tests from [9]; (Example

1.e). The false Marm probabilities for these systems are all zero, i.e., Pfij = 0 for i = 1, ..., m and

j = 1,...,n and Tp= T - Tf. Figures 5 and 6 show the failure source and detection probabilities

for Example (1.a) through (1.d), and Example (1.e), respectively. Figures 7 and 8 show: (1) the

set of failed tests T t, (2) diagnostic results, (3) likelihood, (4) processing time and total number of

runs to converge to the diagnostic results, (5) total processing time and total number of runs, and

(6) approximate duality gap. The diagnostic results are based on the near-optimM multiple fault

diagnosis algorithm in Figure 3. The processing times for these examples are obtained by running

the MFD algorithm on a SPARC 10. Binglin et. al. [3] presented a genetic algorithm which

required 10 minutes to find the set of diagnoses in Example 1.a with an IBM PS/2 Model 40 SX-20

MHZ microcomputer. These results show the superior performance of our algorithm compared to

the algorithm in [3]. Miller et. al. [9] have not reported the processing time for Example 1.e.

However, the largest problem that they considered contained 20 failure sources and 15 tests.

Example 2: In this example, we consider systems with: (1) m=n=lO0, re=n=500 and m=n=1000,

(2) the probability of each failure source is set to a random number between (0.001, 0.5), (3) each

test, on average, covers 5, 10 and 20 failure sources, (4) detection probabilities of [ test associated

with its covered failure sources are set to random numbers between (0,1), (5) the false alarm prob-
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.,.,(,,1)=0.170 s,(,2)=0.070 _,,3)= 0.030 p(,4)=0.120 _'5)= 0135

p(.,6)= 0.180 JKJ7)= 0.078 p(_,8)= 0.030 ,(89)= 0.140 ,o(810)= o.oso

P(Sll)= 0.026 P(.sI2)---- 0.014 KsI3)= 0.054 p(Sl4)---- 0.060 P('15)---- 0.003

,_-_)= 0.023 _,,lr)= 0.048 _,'18)=0.079 .,,(,19)=0.098 p(,2o)=0.027

Pdl,2= 0.06 Pd1,4 = 0.68 Pd1,6 = 0.10 Pd1,7 = 0.51 Pd2,1 = 0.53

Pd2,3= 0.81 .Pd2,4 = 0.09 Pd2,5= 0.85 Pd2,8= 0.13 Pd2,9= 0.34

Pd2,10= 0.85 Pd3,2 = 0.64 Pd3,5= 0.45 Pd3, 6- 0.90 Pd3,7--- 0.5.9

Pd3,10= 0.29 Pd4,2= 0,74 Pd4,5= 0.52 Pd4,7= 0.C5 Pd4,9= 0.32

Pds, 3 = 0.72 Pds, 8 = 0.49 Pd6,3= 0.09 Pd6,5= 0.66 Pd6,10= 0.44

PdT,3 = 0.22 Pd7,4 = 0.46 PdT,5= 0.21 Pd7,6= 0.76 Pd7,lO= 0.43

Pds,1 = 0.29 Pd8,2 = 0.34 Pd8,8= 0.25 Pd9,1 ---- 0.39 Pd�,4= 0.20

Pdg,5= 0.90 Pdg,6= 0.48 Pd9,7= 0.38 Pdlo,2= 0.74 Pdio,8 = 0.27

Pdll,12= 0.31 Pdll,14 = 0.85 Pdll,17= 0.30 Pdi2,17= 0.50 Pd13,12= 0.29

Pdl3,14= 0.64 -Pdt3,fS---- 0.13 Pd13,16_ O. II Pd13,18= 0.72 Pdi3,|9 = 0.62

Pd14,13= 0.88 Pd14,18 = 0.27 Pdls,I I - 0.72 PdI5,12 = 0.92 Pdls,14 = 0.07

Pd15,15= 0.47 PallS,J9= 0.73 Pd15,20 = 0.06 Pdl6,16= 0.32 Pd16,17= 0.26

PdlT,l 1 ---- 0.0,5 Pd17,12 = 0.80 Pd17,15 = 0.73 PdlT,18= 0.58 Pdls,12 = 0.04

Pd18,14---- 0.26 /_d18,16= 0.23 /_d18,17-- 0.69 Pdls,20 = 0.51 Pdlg,12= 0.12

Pd19,17= 0.95 Pdlg,20= 0.67 Pd20,14 = 0.43 P'_;;.5 = 0.18 Pd20,I6= 0.11

Figure 5: Probabilities for Example 1.a-l.d

p(Sl)= 0.12 P($2)= 0.14 P(s3)= 0.39 P(,4)= 0.64

_6)= 0.21 _7)= 0.26 _,8)= 0.19 _,9)= 089

P(Sll )- 0,06 P(sI2)----- 0.47 P(J13)= 0.56 P(Sl4)= 0,41

P(s5)= 0.01

P(SlO)= 0.29

P( SZ 5 )=0.06

Pdl,1 = 0.58 Pdl,4= 0.43 Pdl,`5= 0,46 Pdl,6= 091

Pd2,4= 0.67 -Pd2,`5= 0.1 Pd2,7= 0.94 /_d2,10 = 063

Pd3m4---- 0.79 Pd3,7= 0.07 Pd3, 8- 0.14 Pd3,9= 0.13

Pd4,$= 0.58 Pd4,rffi 0.28 Pd4,8= 0.17 Pd4,9= 0.12

Pds,4---- 0.26 Pd$,8---- 0.24 Pd._,9= 0.17 Pds,lO ffi 0.12

Pd6,2= 0.15 Pd6,4---- 0.72 Pd.6,6= 1.00 P#.6,9 = 0.04

Pd7,4 =. 0.07 Pd7,$= 0.46 PdT,6= 0.28 PdT,8----- 0.3

Pds,3= 0.11 Pds,lO= 0.45 Pd�,2== 0.32 Pd.9,5= 0.`57

Pd9,8= 0.26 Pdg,9== 0.97 PdlO,3 = 0.97 Pdlo,5= 0.4

Pdll,l = 0.85 Pdll,2 == 0.36 Pdll,3= 0.64 Pdll,4= 0.84

Pdl2,2=ffi 0.77 Pd12,5= 0.,51 Pdl2,?= 0,91 Pd12,S= 0.05

Pd13,2== 0.3 Pdl3,3m 0.63 Pall3,7== 0,48 Pd13,�== 0.43

Pd14,2== 0.61 Pd14,3== 0.83 Pdl4,4 == 0.42 Pall4,5== 0.97

Pd14,9== 0.08 Pdl4,10== 0.86 Pdl$,l== 0.38 PallS,4,= 0.64

Pdls,7== 0.72 Pdl$,lO= 0.19

Pdl,7 = 0.9

Pd3,3 = 0.44

F'd3,10 = 0.07

Pd4,10 = 0.75

Pd6, I ffi 0.25

Pd7,2 = 0.81

Pds, 1 = 0.96

Pd�,7 = 0.97

Pdlo,lo = 0.89

Pdl 1,10 = 0.21

Pdl3,1 = 0.74

Pdl3,10 =ffi 0.45

Pdl 4,7== 0.23

Pd15,6 == 0.12

" I
!

Figure 6: Probabilities for Example 1.e
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Ex.

l.a

1.b

I.c

1.d

1.e

{jltj E TI} {s,is,E X} Prob(X[Ts,Tp)

{I,2,4,5,7,8,13,15} {I,9, I0, 14, 17} 3.66e-°9

{7, 8,9, 11, 14, 15} {4, 5, 17,20) 1.32e -'°

{1, 3,4, 6, 7, 11, 13, 15, 16} {1,5,9, 14, 16, 17} 6.82e -_a

{1,2,3,7,8, 12, 13, 17} {4,5,8, 14, 19} 2.49e -°9

{1,2, 4, 5, 7,8,9, 10} {3,4, 9, 12, 13} 7.77e -°2

Figure 7: MFD Algorithm Results for Examples 1.a-l.e

EX.

1.a

1.b

l.c

1.d

1.e

Convergence

# Runs Time (see)

8 0.170

2 0.009

2 0.050

1 0.004

2 0.007

Total

# Runs Time (see)

58 0.310

65 0.240

68 0.340

64 1.83

58 0.15

Approximate

Duality Gap

4.68%

4.76%

4.69%

Figure 8: MFD Algorithm Results for Examples 1.a-1.e
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abilities are assumed to be zero, and (6) the number of failed tests are 5, 10 and 20. Figures 9,

10 and 11 show the simulation results for these systems. Each row of these Figures represents the

average of simulation results for 5 randomly generated systems. Note that, in most of the cases, the

average approximate duality gaps are around 5%. However, in some of the cases, for example, the

last row of Figure 9, the approximate duality gap is very large, i.e., 22.15%. In order to improve

the solution (or, equivalently, approximate duality gap), we can apply the L-ranked algorithm. The

average approximate duality gap based on 2-ranked algorithm for the last set of systems in Figure

9 reduces to 1.49%.

Average

Test

Co__tage

5

5

5 20 4 0.83

10 5 3 0.25

10 10 12 2.91

10 20 9 .a nl

20 5 1 0.11

20 l0 2 0.85

20 20 16 23.39

Convergence Total Approximate

[To I _ Runs Time # Runs Time Duality

(see) (see) cap

5 2 0.10 62 2.70 4.25c_

10 16 0.38 63 3.11 3.75%

70 13.78 4.79_:

63 3.35 6.75(?_

60 12.00 5.26%

83 3t.00 9.59%

55 6.97 6.12%

58 28.81 10.96%

59 90.72 22.15%

Figure 9: Simulation Results for m=n=100

Example 3: In this example, we consider three systems with 10 failure sources and 10 tests as

in [15]. The false alarm probabilities are assumed to be zero. The simulation results for 2 l° possible

combinations of test results are shown in Figure 15. The second column shows the number of correct
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Average

Test

Coverage

Convergence Total Approximate

[TI[ # Runs Time # Runs Time Duality

(see) (see) Gap

5 1 0.54 62 23.56 4.15%

10 3 1.62 72 44.58 3.96%

20 16 7.15 66 32.77 4.23%

10 5 1 0.48 58 26.99 4.82%

10 10 1 1.20 69 46.68 4.60%

10 20 15 19.25 67 85.37 6.60%

20 5 1 0.56 51 30.41 3.75%

20 10 6 6.55 64 60.38 3.00%

20 20 11 26.19 64 184.06 16.03%

Figure 10: Simulation Results for rn=n=500

cases out of 1024 possible combinations of test results. The third column shows the weighted

probability of correct cases. The columns corresponding to Nd and N; denote the unweighted

probabilities of detection, i.e., the unweighted probability of common faulty failure sources in the

optimal and near-optimal solutions, and false alarm, i.e., the unweighted probability of faulty failure

sources in the near-optimal solution and not in the optimal solution. Figure 16 shows the simulation

results based on the 2-ranked algorithm. The average weighted (unweighted) accuracy based on the

MFD algorithm and 2-ranked algorithm are 97.71% (94.99%) and 99.96%(99.77%), respectively.

Example 4: In this example, we consider the medical example in [14, 19]. The system under

consideration is for neuropsychiatric diagnosis. The system consists of 26 disorders (failure sources)

from psychiatry and neurology which affect mental status. A list of 56 sympt9ms (tests) and signs

was assembled for each disorder. There are 384 links in the system, each of which connects a
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Average Convergence Total Approximate

Test ITj'I _ Runs Time # Runs Time Duality

Coverage (sec) (sec) (_ ap

5 5 2 3.39 67 102.09 5.89%

5 10 2 3.53 73 122.88 5.12%

5 2(} 2 5.02 67 138.56 4.59%

I0 5 1 2.27 54 87.95 4.09%

10 10 2 3.83 55 99.53 4.27%

I0 20 5 11.90 66 169.60 4.99%

20 5 l 3.26 53 103.29 4.28%

20 10 II 30.29 57 137.15 4.94%

20 20 28 139.14 76 374.54 9.42%

Figure 11: Simulation Results for m=n=1000

disorder to a manifestation. Similar to [ld], five groups of test cases are used to test the MFD

and L-ranked algorithms. Manifestations are chosen randomly from the total set of 56 possible

manifestations based on a uniform distribution. Each group of test cases consists of ten different

sets of manifestations. Each case in the first test group has one present manifestation (failed test);

each case in the other groups have 3, 5, 7 and 9 manifestations. If any randomly generated test

result is inconsistent with the causal network, the case is discarded and a new one is generated.

The inconsistent test results may occur because the causal network used in the experiment has

some perfect tests, i.e., Pdij = 1 and Pfii = O. Thus, after applying the first Lemma, and reducing

the size of the problem, the second Lemma may not be satisfied, i.e., there exists a failed test that

is not covered by any failure source. Simulation results show that among all 50 cases MFD and

2-ranked algorithms generate 98% and 100% optimal solutions. Peng and Reggia applied their



Submitted to IEEE Trmls. on Systems, Man, and Cybernetics
25

p(,j)= 0.026 P(,2)= 0.0_4 p(,3)= 0.004 P(*4)= 0.0_0 _,_)= 0.003

_,0)= 0.023 P('7)= 0.048 _'8)= 0.079 ,_'9)= 00._8 rX',lo)= 0.027

Pdl,2= 0.3! Pd],4= 0.83 Pdl,7---- 0,30 Pd2,7= 0.50 Pd3,2= 0.29

Pd3,4 = 0.64 Pd3,5= O. 15 Pd3,6= O.11 Pd3,8= 0.72 Pd3,9= 0.62

Pal4,3 = 0.88 Pd4, 8 --. 0.27 Pd5,1 = 0.72 Pd5,2= 092 Pd5,4 = 0.07

Pd5,5---- 0.47 ,F'dS,9 = 0.73 Pds,lO= 0.06 Pd6,G= 032 Pd6,7----- 0.20

PdT,l ---- 0.05 Pd7,2= 0.80 DdT,5= 0.73 PdT,8= 058 Pd8,2= 0.04

Pd8,4= 0.26 Pd8,6= 0.23 Pds,7= 0.69 Pds,lO= 051 Pdg,2= 0.12

Pd9,7= 0.95 Pd9,10= 0.67 "°cliO,4= 0.43 Pdlo,5= O18 Pdlo,6= 0.]!

Figure 12: Failure Source and Detection Probabilities for Example 3.a

m

P(,I }= o.t70 _,2)= 0.070 P('3)= 0.030 _,4)= 0.120 m'_5)= o._3s

P(-'6)= 0.180 P(s7)= 0.075 P(s8)= 0.030 P(s9)= O140 P(,IO)= 0,050

Pdl,2---- 0.06 Pdl,4= 0.68 Pdl,6= 0.10 Pdl,7= 051 Pd2,1 = 0.53

Pd2,3= O.81 Pd2,4= 0.09 Pd2,5_ 0.85 Pd2,8= 0. t3 Pd2,9= 0.34

Pd2,10= 0.85 Pd3,2= 0.54 Pd3,5= O.43 Pd3,6= 0.90 Pd3,7= 0.59

Pd3,10= 0.29 ,Pd4,2= 0.74 Pd4,$= 0.52 Pd4,7= 0.¢.5 Pd4,9= 0.32

Pd5,3---- 0.72 Pds,8= 0.49 Pd6,3= 0.09 Pd6,5= 0_._. Pd6,10= 0.44

•°d7,3= 0.22 PdT,4= 0.46 Pd7,5= 0.21 PdT,6= 0.76 PdT,]O= 0.43

Pds, I = 0.29 Pd8,2= 0.34 Pd8,8= 0.25 Pd9,t= 0 39 Pd9,4 = 0.20

Pdg,5= 0.90 Pdg,6= 0.48 Pdg,7= 0.38 Pdlo,2= 0 74 Pdlo,8= 0.27

Figure 13: Failure Source and Detectiou Probabilities for Example 3.1)

_,l)= 0.34 p(,=)= 0.14 _(,3)= 0.0_ p(,4)= 0.24 _,,)= 0.27

_,6)= 0.36 p(,7)= 0.30 J'('e)= 0.0_ _'9)= 0.2, p(,,o)= 0.10

Pdl,2== 0.06 Pdl,4= 0.68 Pdl,6---- 0.10 Pdl,7 == 0.51 Pd2,1== 0.53

Pd2,3== 0.81 Pd2,4= 0.09 Pd2,5= 0.93 Pd2,8== 0.13 Pd2,9--- 0.34

Pal2,10== 0.8,5 Pd3,2= 0.54 Pd3,$= 0.45, Pd3,6= 0.90 Pd3,?----" 0.59

Pd3,10== 0.29 Pd4,2= 0.74 Pd4,5== 0.52 Pd4,7------ 0.65 Pd4,9== 0.32

PdS,3 == 0.72 Pds,9= 0.49 Pd6,3--- 0.09 Pd6,5= 0.66 Pd6,10= 0.44

PdT,3=: 0.22 PdT,4== 0.46 PdT,$== 0.21 Pd?,6== 0.76 Pd7,10== 0.43

Pdg,l = 0.29 Pds,2== 0.34 Pds,8= 0.25 Pdg,l= 0.39 Pd9,4== 0.20

P_a,s= o,oo Pag,s= o.40 P_,7= 0.30 Pazo,2= 0.r4 P, qo,s= 0.2?_]

Figure 14: Failure Source and Detection Probabilities for Example 3.c
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Example Correct cases Na

# Times (out of 1024) Weighted

3.a 992 (96.88%) 99.91% 98.63%

3.1) 971 (94.82%) 98.61% 97.60%

955 (93.26%) 94.61%3.C 97.66%

0.39%

0.31%

0.37%

Figure 15: MFD Alg. Results for Exa.mples 3.a-3.c

Example Correct cases

# Times (out of 1024) Weighted

3.a 1024 (100%) 100%

3.b 1019 (99.51%) 99.92%

1022 (99.80%)3.C 99.95%

lOO% 0.00%

99.77% 0.06%

99.92% 0.03%

Figure 16: 2-ranked Alg. Results for Examples 3.a-3.c
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competition-based connectionist methods to this causal network. Their algorithm generated 74%

of globally optimal solutions, and 90% of one of the three globally optimal solutions.

VII. Conclusion

In this paper, we considered the problem of constructing optimal and near-optimal multiple

fault diagnosis in bipartite systems with unreliable (imperfect) tests. We presented a multiple fault

diagnosis algorithm based on Lagrangian relaxation and subgradient optimization method, which

provides near optimal solutions for the multiple fault diagnosis, and upper bounds for an optimal

branch-and-bound algorithm. Computational results indicate that our algorithm can be used in

systems with as many as 1000 faults. In addition, we presented an algorithm to generate the set

of L-ra.nked multiple fa.ult candidates. In this algorithm, we find the most likely candidate using

the near optimal multiple fault diagnosis algorithm. Then, we partition the problem, based on

the first solution, to a set of disjoint subproblems. The solutions to these subproblems with the

highest likelihood represents the second most likely candidates. This procedure is continued until

L-ranked multiple fault diagnoses are found, or no more feasible solutions exist. We showed that

the computational complexity of this approach is O(Lm2IT/I), and therefore, applicable for systems

with as many as 1000 faults and tests. Finally, we extended the multiple fault diagnosis problem to

redundant or repetitive tests. In this case, the problem is very similar to the original multiple fault

diagnosis problem, and therefore, the MFD algorithm can be extended to this problem as well.

In this paper, we assumed that the test results are known prior to diagnosis. That is, we

considered the problem of multiple fault diagnosis with unreliable tests. The problem of sequential

multiple fault diagnosis strategy (testing) with unreliable tests is an important problem in field

maintenance. Furthermore, the order of partitioning in the L-ranked algorithm may improve the

accuracy of the near-optimal solutions. We expect to investigate these challengirig issues in our

future efforts.
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